You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

533 lines
17 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(** Iterative Breadth-First Bounded Exploration
The analysis' semantics of control flow. *)
open Domain_intf
open Control_intf
module type Elt = sig
type t [@@deriving compare, equal, sexp_of]
val pp : t pp
val joinable : t -> t -> bool
end
module type QueueS = sig
type elt
(** a "queue" of elements, which need not be FIFO *)
type t
val pp : t pp
val create : unit -> t
(** create an empty queue *)
val add : elt -> t -> t
(** add an element *)
val pop : t -> (elt * elt list * t) option
(** [pop q] is [None] if [q] is empty and otherwise is [Some (e, es, q')]
where [e] is the selected element in [q], [es] are other elements in
[q] with the same destination as [e], and [q'] is [q] without [e] and
[es]. *)
end
module type Queue = functor (Elt : Elt) -> QueueS with type elt = Elt.t
module PriorityQueue (Elt : Elt) : QueueS with type elt = Elt.t = struct
type elt = Elt.t
module Elts = Set.Make (Elt)
type t = {queue: Elt.t FHeap.t; removed: Elts.t}
let pp ppf {queue; removed} =
let rev_elts =
FHeap.fold queue ~init:[] ~f:(fun rev_elts elt ->
if Elts.mem elt removed then rev_elts else elt :: rev_elts )
in
Format.fprintf ppf "@[%a@]" (List.pp " ::@ " Elt.pp) (List.rev rev_elts)
let create () = {queue= FHeap.create ~cmp:Elt.compare; removed= Elts.empty}
let add elt {queue; removed} =
let removed' = Elts.remove elt removed in
if removed' == removed then {queue= FHeap.add queue elt; removed}
else {queue; removed= removed'}
let rec pop {queue; removed} =
let* top, queue = FHeap.pop queue in
let removed' = Elts.remove top removed in
if removed' != removed then pop {queue; removed= removed'}
else
let elts, removed =
FHeap.fold queue ~init:([], removed') ~f:(fun (elts, removed) elt ->
if Elt.joinable top elt && not (Elts.mem elt removed) then
(elt :: elts, Elts.add elt removed)
else (elts, removed) )
in
Some (top, elts, {queue; removed})
end
module Make (Config : Config) (D : Domain) (Queue : Queue) = struct
module Stack : sig
type t
val pp : t pp
val empty : t
val push_call : Llair.func Llair.call -> D.from_call -> t -> t
val pop_return : t -> (D.from_call * Llair.jump * t) option
val pop_throw :
t
-> 'a
-> unwind:
( Llair.Reg.t iarray
-> Llair.Reg.Set.t
-> D.from_call
-> 'a
-> 'a)
-> (D.from_call * Llair.jump * t * 'a) option
type as_inlined_location = t [@@deriving compare, equal, sexp_of]
end = struct
type t =
| Return of
{ recursive: bool (** return from a possibly-recursive call *)
; dst: Llair.Jump.t
; formals: Llair.Reg.t iarray
; locals: Llair.Reg.Set.t
; from_call: D.from_call
; stk: t }
| Throw of Llair.Jump.t * t
| Empty
[@@deriving sexp_of]
let rec pp ppf = function
| Return {recursive= false; dst; stk= s} ->
Format.fprintf ppf "R#%i%a" dst.dst.sort_index pp s
| Return {recursive= true; dst; stk= s} ->
Format.fprintf ppf "R↑#%i%a" dst.dst.sort_index pp s
| Throw (dst, s) ->
Format.fprintf ppf "T#%i%a" dst.dst.sort_index pp s
| Empty -> ()
let invariant s =
let@ () = Invariant.invariant [%here] s [%sexp_of: t] in
match s with
| Return _ | Throw (_, Return _) | Empty -> ()
| Throw _ -> fail "malformed stack: %a" pp s ()
let empty = Empty |> check invariant
let push_return call from_call stk =
let Llair.{callee= {formals; locals}; return; recursive; _} = call in
Return {recursive; dst= return; formals; locals; from_call; stk}
|> check invariant
let push_throw call stk =
( match call.Llair.throw with
| None -> stk
| Some jmp -> Throw (jmp, stk) )
|> check invariant
let push_call call from_call stk =
push_throw call (push_return call from_call stk)
let rec pop_return = function
| Throw (_, stk) -> pop_return stk
| Return {from_call; dst; stk} -> Some (from_call, dst, stk)
| Empty -> None
let pop_throw stk state ~unwind =
let rec pop_throw_ state = function
| Return {formals; locals; from_call; stk} ->
pop_throw_ (unwind formals locals from_call state) stk
| Throw (dst, Return {from_call; stk}) ->
Some (from_call, dst, stk, state)
| Empty -> None
| Throw _ as stk -> violates invariant stk
in
pop_throw_ state stk
type as_inlined_location = t [@@deriving sexp_of]
(* Treat a stack as a code location in a hypothetical expansion of the
program where all non-recursive functions have been completely
inlined. In particular, this means to compare stacks as if all Return
frames for recursive calls had been removed. Additionally, the
from_call info in Return frames is ignored. *)
let rec compare_as_inlined_location x y =
if x == y then 0
else
match (x, y) with
| Return {recursive= true; stk= x}, y
|x, Return {recursive= true; stk= y} ->
compare_as_inlined_location x y
| Return {dst= j; stk= x}, Return {dst= k; stk= y} -> (
match Llair.Jump.compare j k with
| 0 -> compare_as_inlined_location x y
| n -> n )
| Return _, _ -> -1
| _, Return _ -> 1
| Throw (j, x), Throw (k, y) -> (
match Llair.Jump.compare j k with
| 0 -> compare_as_inlined_location x y
| n -> n )
| Throw _, _ -> -1
| _, Throw _ -> 1
| Empty, Empty -> 0
let equal_as_inlined_location = [%compare.equal: as_inlined_location]
end
module Work : sig
type t
val init : D.t -> Llair.block -> t
type x
val skip : x
val seq : x -> x -> x
val add :
?prev:Llair.block
-> retreating:bool
-> Stack.t
-> D.t
-> Llair.block
-> x
val run : f:(Stack.t -> D.t -> Llair.block -> x) -> t -> unit
end = struct
module Edge = struct
module T = struct
type t =
{ dst: Llair.Block.t
; src: Llair.Block.t option
; stk: Stack.as_inlined_location }
[@@deriving compare, equal, sexp_of]
end
include T
let pp fs {dst; src} =
Format.fprintf fs "#%i %%%s <--%a" dst.sort_index dst.lbl
(Option.pp "%a" (fun fs (src : Llair.Block.t) ->
Format.fprintf fs " #%i %%%s" src.sort_index src.lbl ))
src
end
module Depths = struct
module M = Map.Make (Edge)
type t = int M.t [@@deriving compare, equal, sexp_of]
let empty = M.empty
let find = M.find
let add = M.add
let join x y =
M.merge x y ~f:(fun _ -> function
| `Left d | `Right d -> Some d
| `Both (d1, d2) -> Some (Int.max d1 d2) )
end
module Elt = struct
(** an edge at a depth with the domain and depths state it yielded *)
type t = {depth: int; edge: Edge.t; state: D.t; depths: Depths.t}
[@@deriving compare, equal, sexp_of]
let pp ppf {depth; edge} =
Format.fprintf ppf "%i: %a" depth Edge.pp edge
let joinable x y = Llair.Block.equal x.edge.dst y.edge.dst
end
module Queue = Queue (Elt)
let enqueue depth edge state depths queue =
[%Trace.info
" %i: %a [%a]@ | %a" depth Edge.pp edge Stack.pp edge.stk Queue.pp
queue] ;
let depths = Depths.add ~key:edge ~data:depth depths in
Queue.add {depth; edge; state; depths} queue
let prune depth edge queue =
[%Trace.info " %i: %a" depth Edge.pp edge] ;
Report.hit_bound Config.bound ;
queue
let dequeue queue =
let+ {depth; edge; state; depths}, elts, queue = Queue.pop queue in
[%Trace.info
" %i: %a [%a]@ | %a" depth Edge.pp edge Stack.pp edge.stk Queue.pp
queue] ;
let state, depths =
List.fold elts (state, depths) ~f:(fun elt (state, depths) ->
(D.join elt.state state, Depths.join elt.depths depths) )
in
(edge, state, depths, queue)
type t = Queue.t
type x = Depths.t -> t -> t
let skip _ w = w
let seq x y d w = y d (x d w)
let add ?prev ~retreating stk state curr depths queue =
let edge = {Edge.dst= curr; src= prev; stk} in
let depth = Option.value (Depths.find edge depths) ~default:0 in
let depth = if retreating then depth + 1 else depth in
if 0 <= Config.bound && Config.bound < depth then
prune depth edge queue
else enqueue depth edge state depths queue
let init state curr =
add ~retreating:false Stack.empty state curr Depths.empty
(Queue.create ())
let rec run ~f queue =
match dequeue queue with
| Some (edge, state, depths, queue) ->
run ~f (f edge.stk state edge.dst depths queue)
| None -> ()
end
let summary_table = Llair.Function.Tbl.create ()
let pp_st () =
[%Trace.printf
"@[<v>%t@]" (fun fs ->
Llair.Function.Tbl.iteri summary_table ~f:(fun ~key ~data ->
Format.fprintf fs "@[<v>%a:@ @[%a@]@]@ " Llair.Function.pp key
(List.pp "@," D.pp_summary)
data ) )]
let exec_jump stk state block Llair.{dst; retreating} =
Work.add ~prev:block ~retreating stk state dst
let exec_skip_func :
Stack.t
-> D.t
-> Llair.block
-> Llair.Reg.t option
-> Llair.jump
-> Work.x =
fun stk state block areturn return ->
Report.unknown_call block.term ;
let state = Option.fold ~f:D.exec_kill areturn state in
exec_jump stk state block return
let exec_call stk state block call globals =
let Llair.{callee; actuals; areturn; return; recursive} = call in
let Llair.{name; formals; freturn; locals; entry} = callee in
[%Trace.call fun {pf} ->
pf "@[<2>@ %a from %a with state@]@;<1 2>%a" Llair.Func.pp_call call
Llair.Function.pp return.dst.parent.name D.pp state]
;
let dnf_states =
if Config.function_summaries then D.dnf state else [state]
in
let domain_call =
D.call ~globals ~actuals ~areturn ~formals ~freturn ~locals
in
List.fold dnf_states Work.skip ~f:(fun state acc ->
match
if not Config.function_summaries then None
else
let state = fst (domain_call ~summaries:false state) in
let* summary = Llair.Function.Tbl.find summary_table name in
List.find_map ~f:(D.apply_summary state) summary
with
| None ->
let state, from_call =
domain_call ~summaries:Config.function_summaries state
in
let stk = Stack.push_call call from_call stk in
Work.seq acc
(Work.add stk ~prev:block ~retreating:recursive state entry)
| Some post -> Work.seq acc (exec_jump stk post block return) )
|>
[%Trace.retn fun {pf} _ -> pf ""]
let exec_call stk state block call globals =
let Llair.{callee; areturn; return; _} = call in
if Llair.Func.is_undefined callee then
exec_skip_func stk state block areturn return
else exec_call stk state block call globals
let exec_return stk pre_state (block : Llair.block) exp =
let Llair.{name; formals; freturn; locals} = block.parent in
[%Trace.call fun {pf} -> pf "@ from: %a" Llair.Function.pp name]
;
let summarize post_state =
if not Config.function_summaries then post_state
else
let function_summary, post_state =
D.create_summary ~locals ~formals post_state
in
Llair.Function.Tbl.add_multi ~key:name ~data:function_summary
summary_table ;
pp_st () ;
post_state
in
let exit_state =
match (freturn, exp) with
| Some freturn, Some return_val ->
D.exec_move (IArray.of_ (freturn, return_val)) pre_state
| None, None -> pre_state
| _ -> violates Llair.Func.invariant block.parent
in
( match Stack.pop_return stk with
| Some (from_call, retn_site, stk) ->
let post_state = summarize (D.post locals from_call exit_state) in
let retn_state = D.retn formals freturn from_call post_state in
exec_jump stk retn_state block retn_site
| None ->
if Config.function_summaries then
summarize exit_state |> (ignore : D.t -> unit) ;
Work.skip )
|>
[%Trace.retn fun {pf} _ -> pf ""]
let exec_throw stk pre_state (block : Llair.block) exc =
let func = block.parent in
[%Trace.call fun {pf} -> pf "@ from %a" Llair.Function.pp func.name]
;
let unwind formals scope from_call state =
D.retn formals (Some func.fthrow) from_call
(D.post scope from_call state)
in
( match Stack.pop_throw stk ~unwind pre_state with
| Some (from_call, retn_site, stk, unwind_state) ->
let fthrow = func.fthrow in
let exit_state =
D.exec_move (IArray.of_ (fthrow, exc)) unwind_state
in
let post_state = D.post func.locals from_call exit_state in
let retn_state =
D.retn func.formals func.freturn from_call post_state
in
exec_jump stk retn_state block retn_site
| None -> Work.skip )
|>
[%Trace.retn fun {pf} _ -> pf ""]
let exec_assume cond jump stk state block =
match D.exec_assume state cond with
| Some state -> exec_jump stk state block jump
| None ->
[%Trace.info " infeasible %a@\n@[%a@]" Llair.Exp.pp cond D.pp state] ;
Work.skip
let exec_term : Llair.program -> Stack.t -> D.t -> Llair.block -> Work.x =
fun pgm stk state block ->
[%Trace.info "@\n@[%a@]@\n%a" D.pp state Llair.Term.pp block.term] ;
Report.step_term block ;
match block.term with
| Switch {key; tbl; els} ->
IArray.fold tbl
~f:(fun (case, jump) x ->
exec_assume (Llair.Exp.eq key case) jump stk state block
|> Work.seq x )
(exec_assume
(IArray.fold tbl Llair.Exp.true_ ~f:(fun (case, _) b ->
Llair.Exp.and_ (Llair.Exp.dq key case) b ))
els stk state block)
| Iswitch {ptr; tbl} ->
IArray.fold tbl Work.skip ~f:(fun jump x ->
exec_assume
(Llair.Exp.eq ptr
(Llair.Exp.label
~parent:(Llair.Function.name jump.dst.parent.name)
~name:jump.dst.lbl))
jump stk state block
|> Work.seq x )
| Call ({callee} as call) ->
exec_call stk state block call
(Domain_used_globals.by_function Config.globals callee.name)
| ICall ({callee; areturn; return} as call) -> (
let lookup name = Llair.Func.find name pgm.functions in
match D.resolve_callee lookup callee state with
| [] -> exec_skip_func stk state block areturn return
| callees ->
List.fold callees Work.skip ~f:(fun callee x ->
exec_call stk state block {call with callee}
(Domain_used_globals.by_function Config.globals
callee.name)
|> Work.seq x ) )
| Return {exp} -> exec_return stk state block exp
| Throw {exc} -> exec_throw stk state block exc
| Unreachable -> Work.skip
let exec_inst : Llair.block -> Llair.inst -> D.t -> D.t Or_alarm.t =
fun block inst state ->
[%Trace.info "@\n@[%a@]@\n%a" D.pp state Llair.Inst.pp inst] ;
Report.step_inst block inst ;
D.exec_inst inst state
let exec_block : Llair.program -> Stack.t -> D.t -> Llair.block -> Work.x
=
fun pgm stk state block ->
[%trace]
~call:(fun {pf} ->
pf "@ #%i %%%s in %a" block.sort_index block.lbl Llair.Function.pp
block.parent.name )
~retn:(fun {pf} _ ->
pf "#%i %%%s in %a" block.sort_index block.lbl Llair.Function.pp
block.parent.name )
@@ fun () ->
match
Iter.fold_result ~f:(exec_inst block)
(IArray.to_iter block.cmnd)
state
with
| Ok state -> exec_term pgm stk state block
| Error alarm ->
Report.alarm alarm ;
Work.skip
let call_entry_point : Llair.program -> Work.t option =
fun pgm ->
let+ {name; formals; freturn; locals; entry} =
List.find_map Config.entry_points ~f:(fun entry_point ->
let* func = Llair.Func.find entry_point pgm.functions in
if IArray.is_empty func.formals then Some func else None )
in
let summaries = Config.function_summaries in
let globals = Domain_used_globals.by_function Config.globals name in
let actuals = IArray.empty in
let areturn = None in
let state, _ =
D.call ~summaries ~globals ~actuals ~areturn ~formals ~freturn ~locals
(D.init pgm.globals)
in
Work.init state entry
let exec_pgm : Llair.program -> unit =
fun pgm ->
match call_entry_point pgm with
| Some work -> Work.run ~f:(exec_block pgm) work
| None -> fail "no entry point found" ()
let compute_summaries pgm : D.summary list Llair.Function.Map.t =
assert Config.function_summaries ;
exec_pgm pgm ;
Llair.Function.Tbl.fold summary_table Llair.Function.Map.empty
~f:(fun ~key ~data map ->
match data with
| [] -> map
| _ -> Llair.Function.Map.add ~key ~data map )
end
[@@inlined]