You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2605 lines
97 KiB

(*
* Copyright (c) 2009 - 2013 Monoidics ltd.
* Copyright (c) 2013 - present Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*)
open! Utils
(** Functions for Propositions (i.e., Symbolic Heaps) *)
module L = Logging
module F = Format
(** type to describe different strategies for initializing fields of a structure. [No_init] does not
initialize any fields of the struct. [Fld_init] initializes the fields of the struct with fresh
variables (C) or default values (Java). *)
type struct_init_mode =
| No_init
| Fld_init
let unSome = function
| Some x -> x
| _ -> assert false
type normal (** kind for normal props, i.e. normalized *)
type exposed (** kind for exposed props *)
type pi = Sil.atom list
type sigma = Sil.hpred list
module Core : sig
(** the kind 'a should range over [normal] and [exposed] *)
type 'a t = private
{
sigma: sigma; (** spatial part *)
sub: Sil.subst; (** substitution *)
pi: pi; (** pure part *)
sigma_fp : sigma; (** abduced spatial part *)
pi_fp: pi; (** abduced pure part *)
}
(** Proposition [true /\ emp]. *)
val prop_emp : normal t
(** Set individual fields of the prop. *)
val set : ?sub:Sil.subst -> ?pi:pi -> ?sigma:sigma -> ?pi_fp:pi -> ?sigma_fp:sigma ->
'a t -> exposed t
(** Cast an exposed prop to a normalized one by just changing the type *)
val unsafe_cast_to_normal : exposed t -> normal t
end = struct
(** A proposition. The following invariants are mantained. [sub] is of
the form id1 = e1 ... idn = en where: the id's are distinct and do not
occur in the e's nor in [pi] or [sigma]; the id's are in sorted
order; the id's are not existentials; if idn = yn (for yn not
existential) then idn < yn in the order on ident's. [pi] is sorted
and normalized, and does not contain x = e. [sigma] is sorted and
normalized. *)
type 'a t =
{
sigma: sigma; (** spatial part *)
sub: Sil.subst; (** substitution *)
pi: pi; (** pure part *)
sigma_fp : sigma; (** abduced spatial part *)
pi_fp: pi; (** abduced pure part *)
}
(** Proposition [true /\ emp]. *)
let prop_emp : normal t =
{
sub = Sil.sub_empty;
pi = [];
sigma = [];
pi_fp = [];
sigma_fp = [];
}
let set ?sub ?pi ?sigma ?pi_fp ?sigma_fp p =
let set_ p
?(sub=p.sub) ?(pi=p.pi) ?(sigma=p.sigma) ?(pi_fp=p.pi_fp) ?(sigma_fp=p.sigma_fp) ()
=
{ sub; pi; sigma; pi_fp; sigma_fp }
in
set_ p ?sub ?pi ?sigma ?pi_fp ?sigma_fp ()
let unsafe_cast_to_normal (p: exposed t) : normal t =
(p :> normal t)
end
include Core
exception Cannot_star of L.ml_loc
(** {2 Basic Functions for Propositions} *)
(** {1 Functions for Comparison} *)
(** Comparison between lists of equalities and disequalities. Lexicographical order. *)
let rec pi_compare pi1 pi2 =
if pi1 == pi2 then 0
else match (pi1, pi2) with
| ([],[]) -> 0
| ([], _:: _) -> - 1
| (_:: _,[]) -> 1
| (a1:: pi1', a2:: pi2') ->
let n = Sil.atom_compare a1 a2 in
if n <> 0 then n
else pi_compare pi1' pi2'
let pi_equal pi1 pi2 =
pi_compare pi1 pi2 = 0
(** Comparsion between lists of heap predicates. Lexicographical order. *)
let rec sigma_compare sigma1 sigma2 =
if sigma1 == sigma2 then 0
else match (sigma1, sigma2) with
| ([],[]) -> 0
| ([], _:: _) -> - 1
| (_:: _,[]) -> 1
| (h1:: sigma1', h2:: sigma2') ->
let n = Sil.hpred_compare h1 h2 in
if n <> 0 then n
else sigma_compare sigma1' sigma2'
let sigma_equal sigma1 sigma2 =
sigma_compare sigma1 sigma2 = 0
(** Comparison between propositions. Lexicographical order. *)
let prop_compare p1 p2 =
sigma_compare p1.sigma p2.sigma
|> next Sil.sub_compare p1.sub p2.sub
|> next pi_compare p1.pi p2.pi
|> next sigma_compare p1.sigma_fp p2.sigma_fp
|> next pi_compare p1.pi_fp p2.pi_fp
(** Check the equality of two propositions *)
let prop_equal p1 p2 =
prop_compare p1 p2 = 0
(** {1 Functions for Pretty Printing} *)
(** Pretty print a footprint. *)
let pp_footprint _pe f fp =
let pe = { _pe with pe_cmap_norm = _pe.pe_cmap_foot } in
let pp_pi f () =
if fp.pi_fp != [] then
F.fprintf f "%a ;@\n" (pp_semicolon_seq_oneline pe (Sil.pp_atom pe)) fp.pi_fp in
if fp.pi_fp != [] || fp.sigma_fp != [] then
F.fprintf f "@\n[footprint@\n @[%a%a@] ]"
pp_pi () (pp_semicolon_seq pe (Sil.pp_hpred pe)) fp.sigma_fp
let pp_texp_simple pe = match pe.pe_opt with
| PP_SIM_DEFAULT -> Sil.pp_texp pe
| PP_SIM_WITH_TYP -> Sil.pp_texp_full pe
(** Pretty print a pointsto representing a stack variable as an equality *)
let pp_hpred_stackvar pe0 f (hpred : Sil.hpred) =
let pe, changed = Sil.color_pre_wrapper pe0 f hpred in
begin match hpred with
| Hpointsto (Exp.Lvar pvar, se, te) ->
let pe' = match se with
| Eexp (Exp.Var _, _) when not (Pvar.is_global pvar) ->
{ pe with pe_obj_sub = None } (* dont use obj sub on the var defining it *)
| _ -> pe in
(match pe'.pe_kind with
| PP_TEXT | PP_HTML ->
F.fprintf f "%a = %a:%a"
(Pvar.pp_value pe') pvar (Sil.pp_sexp pe') se (pp_texp_simple pe') te
| PP_LATEX ->
F.fprintf f "%a{=}%a" (Pvar.pp_value pe') pvar (Sil.pp_sexp pe') se)
| Hpointsto _ | Hlseg _ | Hdllseg _ -> assert false (* should not happen *)
end;
Sil.color_post_wrapper changed pe0 f
(** Pretty print a substitution. *)
let pp_sub pe f sub =
let pi_sub = IList.map (fun (id, e) -> Sil.Aeq (Var id, e)) (Sil.sub_to_list sub) in
(pp_semicolon_seq_oneline pe (Sil.pp_atom pe)) f pi_sub
(** Dump a substitution. *)
let d_sub (sub: Sil.subst) = L.add_print_action (PTsub, Obj.repr sub)
let pp_sub_entry pe0 f entry =
let pe, changed = Sil.color_pre_wrapper pe0 f entry in
let (x, e) = entry in
begin
match pe.pe_kind with
| PP_TEXT | PP_HTML ->
F.fprintf f "%a = %a" (Ident.pp pe) x (Sil.pp_exp pe) e
| PP_LATEX ->
F.fprintf f "%a{=}%a" (Ident.pp pe) x (Sil.pp_exp pe) e
end;
Sil.color_post_wrapper changed pe0 f
(** Pretty print a substitution as a list of (ident,exp) pairs *)
let pp_subl pe =
if Config.smt_output then pp_semicolon_seq pe (pp_sub_entry pe)
else pp_semicolon_seq_oneline pe (pp_sub_entry pe)
(** Pretty print a pi. *)
let pp_pi pe =
if Config.smt_output then pp_semicolon_seq pe (Sil.pp_atom pe)
else pp_semicolon_seq_oneline pe (Sil.pp_atom pe)
(** Dump a pi. *)
let d_pi (pi: pi) = L.add_print_action (PTpi, Obj.repr pi)
(** Pretty print a sigma. *)
let pp_sigma pe =
pp_semicolon_seq pe (Sil.pp_hpred pe)
(** Split sigma into stack and nonstack parts.
The boolean indicates whether the stack should only include local variales. *)
let sigma_get_stack_nonstack only_local_vars sigma =
let hpred_is_stack_var = function
| Sil.Hpointsto (Lvar pvar, _, _) -> not only_local_vars || Pvar.is_local pvar
| _ -> false in
IList.partition hpred_is_stack_var sigma
(** Pretty print a sigma in simple mode. *)
let pp_sigma_simple pe env fmt sigma =
let sigma_stack, sigma_nonstack = sigma_get_stack_nonstack false sigma in
let pp_stack fmt _sg =
let sg = IList.sort Sil.hpred_compare _sg in
if sg != [] then Format.fprintf fmt "%a" (pp_semicolon_seq pe (pp_hpred_stackvar pe)) sg in
let pp_nl fmt doit = if doit then
(match pe.pe_kind with
| PP_TEXT | PP_HTML -> Format.fprintf fmt " ;@\n"
| PP_LATEX -> Format.fprintf fmt " ; \\\\@\n") in
let pp_nonstack fmt = pp_semicolon_seq pe (Sil.pp_hpred_env pe (Some env)) fmt in
if sigma_stack != [] || sigma_nonstack != [] then
Format.fprintf fmt "%a%a%a"
pp_stack sigma_stack pp_nl
(sigma_stack != [] && sigma_nonstack != []) pp_nonstack sigma_nonstack
(** Dump a sigma. *)
let d_sigma (sigma: sigma) = L.add_print_action (PTsigma, Obj.repr sigma)
(** Dump a pi and a sigma *)
let d_pi_sigma pi sigma =
let d_separator () = if pi != [] && sigma != [] then L.d_strln " *" in
d_pi pi; d_separator (); d_sigma sigma
let pi_of_subst sub =
IList.map (fun (id1, e2) -> Sil.Aeq (Var id1, e2)) (Sil.sub_to_list sub)
(** Return the pure part of [prop]. *)
let get_pure (p: 'a t) : pi =
pi_of_subst p.sub @ p.pi
(** Print existential quantification *)
let pp_evars pe f evars =
if evars != []
then match pe.pe_kind with
| PP_TEXT | PP_HTML ->
F.fprintf f "exists [%a]. " (pp_comma_seq (Ident.pp pe)) evars
| PP_LATEX ->
F.fprintf f "\\exists %a. " (pp_comma_seq (Ident.pp pe)) evars
(** Print an hpara in simple mode *)
let pp_hpara_simple _pe env n f pred =
let pe = pe_reset_obj_sub _pe in (* no free vars: disable object substitution *)
match pe.pe_kind with
| PP_TEXT | PP_HTML ->
F.fprintf f "P%d = %a%a"
n (pp_evars pe) pred.Sil.evars
(pp_semicolon_seq pe (Sil.pp_hpred_env pe (Some env))) pred.Sil.body
| PP_LATEX ->
F.fprintf f "P_{%d} = %a%a\\\\"
n (pp_evars pe) pred.Sil.evars
(pp_semicolon_seq pe (Sil.pp_hpred_env pe (Some env))) pred.Sil.body
(** Print an hpara_dll in simple mode *)
let pp_hpara_dll_simple _pe env n f pred =
let pe = pe_reset_obj_sub _pe in (* no free vars: disable object substitution *)
match pe.pe_kind with
| PP_TEXT | PP_HTML ->
F.fprintf f "P%d = %a%a"
n (pp_evars pe) pred.Sil.evars_dll
(pp_semicolon_seq pe (Sil.pp_hpred_env pe (Some env))) pred.Sil.body_dll
| PP_LATEX ->
F.fprintf f "P_{%d} = %a%a"
n (pp_evars pe) pred.Sil.evars_dll
(pp_semicolon_seq pe (Sil.pp_hpred_env pe (Some env))) pred.Sil.body_dll
(** Create an environment mapping (ident) expressions to the program variables containing them *)
let create_pvar_env (sigma: sigma) : (Exp.t -> Exp.t) =
let env = ref [] in
let filter = function
| Sil.Hpointsto (Lvar pvar, Eexp (Var v, _), _) ->
if not (Pvar.is_global pvar) then env := (Exp.Var v, Exp.Lvar pvar) :: !env
| _ -> () in
IList.iter filter sigma;
let find e =
try
snd (IList.find (fun (e1, _) -> Exp.equal e1 e) !env)
with Not_found -> e in
find
(** Update the object substitution given the stack variables in the prop *)
let prop_update_obj_sub pe prop =
if !Config.pp_simple
then pe_set_obj_sub pe (create_pvar_env prop.sigma)
else pe
(** Pretty print a footprint in simple mode. *)
let pp_footprint_simple _pe env f fp =
let pe = { _pe with pe_cmap_norm = _pe.pe_cmap_foot } in
let pp_pure f pi =
if pi != [] then
F.fprintf f "%a *@\n" (pp_pi pe) pi in
if fp.pi_fp != [] || fp.sigma_fp != [] then
F.fprintf f "@\n[footprint@\n @[%a%a@] ]"
pp_pure fp.pi_fp
(pp_sigma_simple pe env) fp.sigma_fp
(** Create a predicate environment for a prop *)
let prop_pred_env prop =
let env = Sil.Predicates.empty_env () in
IList.iter (Sil.Predicates.process_hpred env) prop.sigma;
IList.iter (Sil.Predicates.process_hpred env) prop.sigma_fp;
env
(** Pretty print a proposition. *)
let pp_prop pe0 f prop =
let pe = prop_update_obj_sub pe0 prop in
let latex = pe.pe_kind == PP_LATEX in
let do_print f () =
let subl = Sil.sub_to_list prop.sub in
(* since prop diff is based on physical equality, we need to extract the sub verbatim *)
let pi = prop.pi in
let pp_pure f () =
if subl != [] then F.fprintf f "%a ;@\n" (pp_subl pe) subl;
if pi != [] then F.fprintf f "%a ;@\n" (pp_pi pe) pi in
if !Config.pp_simple || latex then
begin
let env = prop_pred_env prop in
let iter_f n hpara = F.fprintf f "@,@[<h>%a@]" (pp_hpara_simple pe env n) hpara in
let iter_f_dll n hpara_dll =
F.fprintf f "@,@[<h>%a@]" (pp_hpara_dll_simple pe env n) hpara_dll in
let pp_predicates _ () =
if Sil.Predicates.is_empty env
then ()
else if latex then
begin
F.fprintf f "@\n\\\\\\textsf{where }";
Sil.Predicates.iter env iter_f iter_f_dll
end
else
begin
F.fprintf f "@,where";
Sil.Predicates.iter env iter_f iter_f_dll
end in
F.fprintf f "%a%a%a%a"
pp_pure () (pp_sigma_simple pe env) prop.sigma
(pp_footprint_simple pe env) prop pp_predicates ()
end
else
F.fprintf f "%a%a%a" pp_pure () (pp_sigma pe) prop.sigma (pp_footprint pe) prop in
if !Config.forcing_delayed_prints then (* print in html mode *)
F.fprintf f "%a%a%a" Io_infer.Html.pp_start_color Blue do_print () Io_infer.Html.pp_end_color ()
else
do_print f () (** print in text mode *)
let pp_prop_with_typ pe f p = pp_prop { pe with pe_opt = PP_SIM_WITH_TYP } f p
(** Dump a proposition. *)
let d_prop (prop: 'a t) = L.add_print_action (PTprop, Obj.repr prop)
(** Dump a proposition. *)
let d_prop_with_typ (prop: 'a t) = L.add_print_action (PTprop_with_typ, Obj.repr prop)
(** Print a list of propositions, prepending each one with the given string *)
let pp_proplist_with_typ pe f plist =
let rec pp_seq_newline f = function
| [] -> ()
| [x] -> F.fprintf f "@[%a@]" (pp_prop_with_typ pe) x
| x:: l -> F.fprintf f "@[%a@]@\n(||)@\n%a" (pp_prop_with_typ pe) x pp_seq_newline l in
F.fprintf f "@[<v>%a@]" pp_seq_newline plist
(** dump a proplist *)
let d_proplist_with_typ (pl: 'a t list) =
L.add_print_action (PTprop_list_with_typ, Obj.repr pl)
(** {1 Functions for computing free non-program variables} *)
let pi_fav_add fav pi =
IList.iter (Sil.atom_fav_add fav) pi
let pi_fav =
Sil.fav_imperative_to_functional pi_fav_add
let sigma_fav_add fav sigma =
IList.iter (Sil.hpred_fav_add fav) sigma
let sigma_fav =
Sil.fav_imperative_to_functional sigma_fav_add
let prop_footprint_fav_add fav prop =
sigma_fav_add fav prop.sigma_fp;
pi_fav_add fav prop.pi_fp
(** Find fav of the footprint part of the prop *)
let prop_footprint_fav prop =
Sil.fav_imperative_to_functional prop_footprint_fav_add prop
let prop_fav_add fav prop =
sigma_fav_add fav prop.sigma;
sigma_fav_add fav prop.sigma_fp;
Sil.sub_fav_add fav prop.sub;
pi_fav_add fav prop.pi;
pi_fav_add fav prop.pi_fp
let prop_fav p =
Sil.fav_imperative_to_functional prop_fav_add p
(** free vars of the prop, excluding the pure part *)
let prop_fav_nonpure_add fav prop =
sigma_fav_add fav prop.sigma;
sigma_fav_add fav prop.sigma_fp
(** free vars, except pi and sub, of current and footprint parts *)
let prop_fav_nonpure =
Sil.fav_imperative_to_functional prop_fav_nonpure_add
let hpred_fav_in_pvars_add fav (hpred : Sil.hpred) = match hpred with
| Hpointsto (Lvar _, sexp, _) ->
Sil.strexp_fav_add fav sexp
| Hpointsto _ | Hlseg _ | Hdllseg _ ->
()
let sigma_fav_in_pvars_add fav sigma =
IList.iter (hpred_fav_in_pvars_add fav) sigma
let sigma_fpv sigma =
IList.flatten (IList.map Sil.hpred_fpv sigma)
let pi_fpv pi =
IList.flatten (IList.map Sil.atom_fpv pi)
let prop_fpv prop =
(Sil.sub_fpv prop.sub) @
(pi_fpv prop.pi) @
(pi_fpv prop.pi_fp) @
(sigma_fpv prop.sigma_fp) @
(sigma_fpv prop.sigma)
(** {2 Functions for Subsitition} *)
let pi_sub (subst: Sil.subst) pi =
let f = Sil.atom_sub subst in
IList.map f pi
let sigma_sub subst sigma =
let f = Sil.hpred_sub subst in
IList.map f sigma
(** Return [true] if the atom is an inequality *)
let atom_is_inequality (atom : Sil.atom) = match atom with
| Aeq (BinOp ((Le | Lt), _, _), Const (Cint i))
when IntLit.isone i -> true
| _ -> false
(** If the atom is [e<=n] return [e,n] *)
let atom_exp_le_const (atom : Sil.atom) = match atom with
| Aeq(BinOp (Le, e1, Const (Cint n)), Const (Cint i))
when IntLit.isone i ->
Some (e1, n)
| _ -> None
(** If the atom is [n<e] return [n,e] *)
let atom_const_lt_exp (atom : Sil.atom) = match atom with
| Aeq(BinOp (Lt, Const (Cint n), e1), Const (Cint i))
when IntLit.isone i ->
Some (n, e1)
| _ -> None
let exp_reorder e1 e2 = if Exp.compare e1 e2 <= 0 then (e1, e2) else (e2, e1)
(** create a strexp of the given type, populating the structures if [expand_structs] is true *)
let rec create_strexp_of_type tenvo struct_init_mode (typ : Typ.t) len inst : Sil.strexp =
let init_value () =
let create_fresh_var () =
let fresh_id =
(Ident.create_fresh (if !Config.footprint then Ident.kfootprint else Ident.kprimed)) in
Exp.Var fresh_id in
if !Config.curr_language = Config.Java && inst = Sil.Ialloc
then
match typ with
| Tfloat _ -> Exp.Const (Cfloat 0.0)
| _ -> Exp.zero
else
create_fresh_var () in
match typ, len with
| (Tint _ | Tfloat _ | Tvoid | Tfun _ | Tptr _), None ->
Eexp (init_value (), inst)
| Tstruct { Typ.instance_fields }, _ -> (
match struct_init_mode with
| No_init ->
Estruct ([], inst)
| Fld_init ->
(* pass len as an accumulator, so that it is passed to create_strexp_of_type for the last
field, but always return None so that only the last field receives len *)
let f (fld, t, a) (flds, len) =
if Typ.is_objc_ref_counter_field (fld, t, a) then
((fld, Sil.Eexp (Exp.one, inst)) :: flds, None)
else
((fld, create_strexp_of_type tenvo struct_init_mode t len inst) :: flds, None) in
let flds, _ = IList.fold_right f instance_fields ([], len) in
Estruct (flds, inst)
)
| Tarray (_, len_opt), None ->
let len = match len_opt with
| None -> Exp.get_undefined false
| Some len -> Exp.Const (Cint len) in
Earray (len, [], inst)
| Tarray _, Some len ->
Earray (len, [], inst)
| Tvar _, _
| (Tint _ | Tfloat _ | Tvoid | Tfun _ | Tptr _), Some _ ->
assert false
let replace_array_contents (hpred : Sil.hpred) esel : Sil.hpred = match hpred with
| Hpointsto (root, Sil.Earray (len, [], inst), te) ->
Hpointsto (root, Earray (len, esel, inst), te)
| _ -> assert false
(** remove duplicate atoms and redundant inequalities from a sorted pi *)
let rec pi_sorted_remove_redundant (pi : pi) = match pi with
| (Aeq (BinOp (Le, e1, Const (Cint n1)),
Const (Cint i1)) as a1) ::
Aeq (BinOp (Le, e2, Const (Cint n2)),
Const (Cint i2)) :: rest
when IntLit.isone i1 && IntLit.isone i2 && Exp.equal e1 e2 && IntLit.lt n1 n2 ->
(* second inequality redundant *)
pi_sorted_remove_redundant (a1 :: rest)
| Aeq (BinOp (Lt, Const (Cint n1), e1), Const (Cint i1)) ::
(Aeq (BinOp (Lt, Const (Cint n2), e2), Const (Cint i2)) as a2)
:: rest
when IntLit.isone i1 && IntLit.isone i2 && Exp.equal e1 e2 && IntLit.lt n1 n2 ->
(* first inequality redundant *)
pi_sorted_remove_redundant (a2 :: rest)
| a1:: a2:: rest ->
if Sil.atom_equal a1 a2 then pi_sorted_remove_redundant (a2 :: rest)
else a1 :: pi_sorted_remove_redundant (a2 :: rest)
| [a] -> [a]
| [] -> []
(** find the unsigned expressions in sigma (immediately inside a pointsto, for now) *)
let sigma_get_unsigned_exps sigma =
let uexps = ref [] in
let do_hpred (hpred : Sil.hpred) = match hpred with
| Hpointsto (_, Eexp (e, _), Sizeof (Tint ik, _, _))
when Typ.ikind_is_unsigned ik ->
uexps := e :: !uexps
| _ -> () in
IList.iter do_hpred sigma;
!uexps
(** Collapse consecutive indices that should be added. For instance,
this function reduces x[1][1] to x[2]. The [typ] argument is used
to ensure the soundness of this collapsing. *)
let exp_collapse_consecutive_indices_prop (typ : Typ.t) exp =
let typ_is_base (typ1 : Typ.t) = match typ1 with
| Tint _ | Tfloat _ | Tstruct _ | Tvoid | Tfun _ ->
true
| _ ->
false in
let typ_is_one_step_from_base =
match typ with
| Tptr (t, _) | Tarray (t, _) ->
typ_is_base t
| _ ->
false in
let rec exp_remove (e0 : Exp.t) =
match e0 with
| Lindex(Lindex(base, e1), e2) ->
let e0' : Exp.t = Lindex(base, BinOp(PlusA, e1, e2)) in
exp_remove e0'
| _ -> e0 in
begin
if typ_is_one_step_from_base then exp_remove exp else exp
end
(** {2 Compaction} *)
(** Return a compact representation of the prop *)
let prop_compact sh (prop : normal t) : normal t =
let sigma' = IList.map (Sil.hpred_compact sh) prop.sigma in
unsafe_cast_to_normal (set prop ~sigma:sigma')
(** {2 Query about Proposition} *)
(** Check if the sigma part of the proposition is emp *)
let prop_is_emp p = match p.sigma with
| [] -> true
| _ -> false
(** {2 Functions for changing and generating propositions} *)
(** Conjoin a heap predicate by separating conjunction. *)
let prop_hpred_star (p : 'a t) (h : Sil.hpred) : exposed t =
let sigma' = h:: p.sigma in
set p ~sigma:sigma'
let prop_sigma_star (p : 'a t) (sigma : sigma) : exposed t =
let sigma' = sigma @ p.sigma in
set p ~sigma:sigma'
(** return the set of subexpressions of [strexp] *)
let strexp_get_exps strexp =
let rec strexp_get_exps_rec exps (se : Sil.strexp) = match se with
| Eexp (Exn e, _) -> Exp.Set.add e exps
| Eexp (e, _) -> Exp.Set.add e exps
| Estruct (flds, _) ->
IList.fold_left (fun exps (_, strexp) -> strexp_get_exps_rec exps strexp) exps flds
| Earray (_, elems, _) ->
IList.fold_left (fun exps (_, strexp) -> strexp_get_exps_rec exps strexp) exps elems in
strexp_get_exps_rec Exp.Set.empty strexp
(** get the set of expressions on the righthand side of [hpred] *)
let hpred_get_targets (hpred : Sil.hpred) = match hpred with
| Hpointsto (_, rhs, _) -> strexp_get_exps rhs
| Hlseg (_, _, _, e, el) ->
IList.fold_left (fun exps e -> Exp.Set.add e exps) Exp.Set.empty (e :: el)
| Hdllseg (_, _, _, oB, oF, iB, el) ->
(* only one direction supported for now *)
IList.fold_left (fun exps e -> Exp.Set.add e exps) Exp.Set.empty (oB :: oF :: iB :: el)
(** return the set of hpred's and exp's in [sigma] that are reachable from an expression in
[exps] *)
let compute_reachable_hpreds sigma exps =
let rec compute_reachable_hpreds_rec sigma (reach, exps) =
let add_hpred_if_reachable (reach, exps) (hpred : Sil.hpred) = match hpred with
| Hpointsto (lhs, _, _) as hpred when Exp.Set.mem lhs exps->
let reach' = Sil.HpredSet.add hpred reach in
let reach_exps = hpred_get_targets hpred in
(reach', Exp.Set.union exps reach_exps)
| _ -> reach, exps in
let reach', exps' = IList.fold_left add_hpred_if_reachable (reach, exps) sigma in
if (Sil.HpredSet.cardinal reach) = (Sil.HpredSet.cardinal reach') then (reach, exps)
else compute_reachable_hpreds_rec sigma (reach', exps') in
compute_reachable_hpreds_rec sigma (Sil.HpredSet.empty, exps)
(* Module for normalization *)
module Normalize = struct
(** Eliminates all empty lsegs from sigma, and collect equalities
The empty lsegs include
(a) "lseg_pe para 0 e elist",
(b) "dllseg_pe para iF oB oF iB elist" with iF = 0 or iB = 0,
(c) "lseg_pe para e1 e2 elist" and the rest of sigma contains the "cell" e1,
(d) "dllseg_pe para iF oB oF iB elist" and the rest of sigma contains
cell iF or iB. *)
let sigma_remove_emptylseg sigma =
let alloc_set =
let rec f_alloc set (sigma1 : sigma) = match sigma1 with
| [] ->
set
| Hpointsto (e, _, _) :: sigma' | Hlseg (Sil.Lseg_NE, _, e, _, _) :: sigma' ->
f_alloc (Exp.Set.add e set) sigma'
| Hdllseg (Sil.Lseg_NE, _, iF, _, _, iB, _) :: sigma' ->
f_alloc (Exp.Set.add iF (Exp.Set.add iB set)) sigma'
| _ :: sigma' ->
f_alloc set sigma' in
f_alloc Exp.Set.empty sigma
in
let rec f eqs_zero sigma_passed (sigma1: sigma) = match sigma1 with
| [] ->
(IList.rev eqs_zero, IList.rev sigma_passed)
| Hpointsto _ as hpred :: sigma' ->
f eqs_zero (hpred :: sigma_passed) sigma'
| Hlseg (Lseg_PE, _, e1, e2, _) :: sigma'
when (Exp.equal e1 Exp.zero) || (Exp.Set.mem e1 alloc_set) ->
f (Sil.Aeq(e1, e2) :: eqs_zero) sigma_passed sigma'
| Hlseg _ as hpred :: sigma' ->
f eqs_zero (hpred :: sigma_passed) sigma'
| Hdllseg (Lseg_PE, _, iF, oB, oF, iB, _) :: sigma'
when (Exp.equal iF Exp.zero) || (Exp.Set.mem iF alloc_set)
|| (Exp.equal iB Exp.zero) || (Exp.Set.mem iB alloc_set) ->
f (Sil.Aeq(iF, oF):: Sil.Aeq(iB, oB):: eqs_zero) sigma_passed sigma'
| Hdllseg _ as hpred :: sigma' ->
f eqs_zero (hpred :: sigma_passed) sigma'
in
f [] [] sigma
let sigma_intro_nonemptylseg e1 e2 sigma =
let rec f sigma_passed (sigma1 : sigma) = match sigma1 with
| [] ->
IList.rev sigma_passed
| Hpointsto _ as hpred :: sigma' ->
f (hpred :: sigma_passed) sigma'
| Hlseg (Lseg_PE, para, f1, f2, shared) :: sigma'
when (Exp.equal e1 f1 && Exp.equal e2 f2)
|| (Exp.equal e2 f1 && Exp.equal e1 f2) ->
f (Sil.Hlseg (Lseg_NE, para, f1, f2, shared) :: sigma_passed) sigma'
| Hlseg _ as hpred :: sigma' ->
f (hpred :: sigma_passed) sigma'
| Hdllseg (Lseg_PE, para, iF, oB, oF, iB, shared) :: sigma'
when (Exp.equal e1 iF && Exp.equal e2 oF)
|| (Exp.equal e2 iF && Exp.equal e1 oF)
|| (Exp.equal e1 iB && Exp.equal e2 oB)
|| (Exp.equal e2 iB && Exp.equal e1 oB) ->
f (Sil.Hdllseg (Lseg_NE, para, iF, oB, oF, iB, shared) :: sigma_passed) sigma'
| Hdllseg _ as hpred :: sigma' ->
f (hpred :: sigma_passed) sigma'
in
f [] sigma
let (--) = IntLit.sub
let (++) = IntLit.add
let sym_eval abs e =
let rec eval (e : Exp.t) : Exp.t =
(* L.d_str " ["; Sil.d_exp e; L.d_str"] "; *)
match e with
| Var _ ->
e
| Closure c ->
let captured_vars =
IList.map (fun (exp, pvar, typ) -> (eval exp, pvar, typ)) c.captured_vars in
Closure { c with captured_vars; }
| Const _ ->
e
| Sizeof (Tarray (Tint ik, _), Some l, _)
when Typ.ikind_is_char ik && !Config.curr_language = Config.Clang ->
eval l
| Sizeof (Tarray (Tint ik, Some l), _, _)
when Typ.ikind_is_char ik && !Config.curr_language = Config.Clang ->
Const (Cint l)
| Sizeof _ ->
e
| Cast (_, e1) ->
eval e1
| UnOp (Unop.LNot, e1, topt) ->
begin
match eval e1 with
| Const (Cint i) when IntLit.iszero i ->
Exp.one
| Const (Cint _) ->
Exp.zero
| UnOp(LNot, e1', _) ->
e1'
| e1' ->
if abs then Exp.get_undefined false else UnOp(LNot, e1', topt)
end
| UnOp (Neg, e1, topt) ->
begin
match eval e1 with
| UnOp (Neg, e2', _) ->
e2'
| Const (Cint i) ->
Exp.int (IntLit.neg i)
| Const (Cfloat v) ->
Exp.float (-. v)
| Var id ->
UnOp (Neg, Var id, topt)
| e1' ->
if abs then Exp.get_undefined false else UnOp (Neg, e1', topt)
end
| UnOp (BNot, e1, topt) ->
begin
match eval e1 with
| UnOp(BNot, e2', _) ->
e2'
| Const (Cint i) ->
Exp.int (IntLit.lognot i)
| e1' ->
if abs then Exp.get_undefined false else UnOp (BNot, e1', topt)
end
| BinOp (Le, e1, e2) ->
begin
match eval e1, eval e2 with
| Const (Cint n), Const (Cint m) ->
Exp.bool (IntLit.leq n m)
| Const (Cfloat v), Const (Cfloat w) ->
Exp.bool (v <= w)
| BinOp (PlusA, e3, Const (Cint n)), Const (Cint m) ->
BinOp (Le, e3, Exp.int (m -- n))
| e1', e2' ->
Exp.le e1' e2'
end
| BinOp (Lt, e1, e2) ->
begin
match eval e1, eval e2 with
| Const (Cint n), Const (Cint m) ->
Exp.bool (IntLit.lt n m)
| Const (Cfloat v), Const (Cfloat w) ->
Exp.bool (v < w)
| Const (Cint n), BinOp (MinusA, f1, f2) ->
BinOp
(Le, BinOp (MinusA, f2, f1), Exp.int (IntLit.minus_one -- n))
| BinOp(MinusA, f1 , f2), Const(Cint n) ->
Exp.le (BinOp(MinusA, f1 , f2)) (Exp.int (n -- IntLit.one))
| BinOp (PlusA, e3, Const (Cint n)), Const (Cint m) ->
BinOp (Lt, e3, Exp.int (m -- n))
| e1', e2' ->
Exp.lt e1' e2'
end
| BinOp (Ge, e1, e2) ->
eval (Exp.le e2 e1)
| BinOp (Gt, e1, e2) ->
eval (Exp.lt e2 e1)
| BinOp (Eq, e1, e2) ->
begin
match eval e1, eval e2 with
| Const (Cint n), Const (Cint m) ->
Exp.bool (IntLit.eq n m)
| Const (Cfloat v), Const (Cfloat w) ->
Exp.bool (v = w)
| e1', e2' ->
Exp.eq e1' e2'
end
| BinOp (Ne, e1, e2) ->
begin
match eval e1, eval e2 with
| Const (Cint n), Const (Cint m) ->
Exp.bool (IntLit.neq n m)
| Const (Cfloat v), Const (Cfloat w) ->
Exp.bool (v <> w)
| e1', e2' ->
Exp.ne e1' e2'
end
| BinOp (LAnd, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin match e1', e2' with
| Const (Cint i), _ when IntLit.iszero i ->
e1'
| Const (Cint _), _ ->
e2'
| _, Const (Cint i) when IntLit.iszero i ->
e2'
| _, Const (Cint _) ->
e1'
| _ ->
BinOp (LAnd, e1', e2')
end
| BinOp (LOr, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin
match e1', e2' with
| Const (Cint i), _ when IntLit.iszero i ->
e2'
| Const (Cint _), _ ->
e1'
| _, Const (Cint i) when IntLit.iszero i ->
e1'
| _, Const (Cint _) ->
e2'
| _ ->
BinOp (LOr, e1', e2')
end
| BinOp(PlusPI, Lindex (ep, e1), e2) ->
(* array access with pointer arithmetic *)
let e' : Exp.t = BinOp (PlusA, e1, e2) in
eval (Exp.Lindex (ep, e'))
| BinOp (PlusPI, (BinOp (PlusPI, e11, e12)), e2) ->
(* take care of pattern ((ptr + off1) + off2) *)
(* progress: convert inner +I to +A *)
let e2' : Exp.t = BinOp (PlusA, e12, e2) in
eval (Exp.BinOp (PlusPI, e11, e2'))
| BinOp (PlusA as oplus, e1, e2)
| BinOp (PlusPI as oplus, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
let isPlusA = oplus = Binop.PlusA in
let ominus = if isPlusA then Binop.MinusA else Binop.MinusPI in
let (+++) (x : Exp.t) (y : Exp.t) : Exp.t = match x, y with
| _, Const (Cint i) when IntLit.iszero i -> x
| Const (Cint i), Const (Cint j) ->
Const (Cint (IntLit.add i j))
| _ ->
BinOp (oplus, x, y) in
let (---) (x : Exp.t) (y : Exp.t) : Exp.t = match x, y with
| _, Const (Cint i) when IntLit.iszero i -> x
| Const (Cint i), Const (Cint j) ->
Const (Cint (IntLit.sub i j))
| _ -> BinOp (ominus, x, y) in
(* test if the extensible array at the end of [typ] has elements of type [elt] *)
let extensible_array_element_typ_equal elt typ =
Option.map_default (Typ.equal elt) false (Typ.get_extensible_array_element_typ typ) in
begin
match e1', e2' with
(* pattern for arrays and extensible structs:
sizeof(struct s {... t[l]}) + k * sizeof(t)) = sizeof(struct s {... t[l + k]}) *)
| Sizeof (typ, len1_opt, st),
BinOp (Mult, len2, Sizeof (elt, None, _))
when isPlusA && (extensible_array_element_typ_equal elt typ) ->
let len = match len1_opt with Some len1 -> len1 +++ len2 | None -> len2 in
Sizeof (typ, Some len, st)
| Const c, _ when Const.iszero_int_float c ->
e2'
| _, Const c when Const.iszero_int_float c ->
e1'
| Const (Cint n), Const (Cint m) ->
Exp.int (n ++ m)
| Const (Cfloat v), Const (Cfloat w) ->
Exp.float (v +. w)
| UnOp(Neg, f1, _), f2
| f2, UnOp(Neg, f1, _) ->
BinOp (ominus, f2, f1)
| BinOp (PlusA, e, Const (Cint n1)), Const (Cint n2)
| BinOp (PlusPI, e, Const (Cint n1)), Const (Cint n2)
| Const (Cint n2), BinOp (PlusA, e, Const (Cint n1))
| Const (Cint n2), BinOp (PlusPI, e, Const (Cint n1)) ->
e +++ (Exp.int (n1 ++ n2))
| BinOp (MinusA, Const (Cint n1), e), Const (Cint n2)
| Const (Cint n2), BinOp (MinusA, Const (Cint n1), e) ->
Exp.int (n1 ++ n2) --- e
| BinOp (MinusA, e1, e2), e3 -> (* (e1-e2)+e3 --> e1 + (e3-e2) *)
(* progress: brings + to the outside *)
eval (e1 +++ (e3 --- e2))
| _, Const _ ->
e1' +++ e2'
| Const _, _ ->
if isPlusA then e2' +++ e1' else e1' +++ e2'
| Var _, Var _ ->
e1' +++ e2'
| _ ->
if abs && isPlusA then Exp.get_undefined false else
if abs && not isPlusA then e1' +++ (Exp.get_undefined false)
else e1' +++ e2'
end
| BinOp (MinusA as ominus, e1, e2)
| BinOp (MinusPI as ominus, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
let isMinusA = ominus = Binop.MinusA in
let oplus = if isMinusA then Binop.PlusA else Binop.PlusPI in
let (+++) x y : Exp.t = BinOp (oplus, x, y) in
let (---) x y : Exp.t = BinOp (ominus, x, y) in
if Exp.equal e1' e2' then Exp.zero
else begin
match e1', e2' with
| Const c, _ when Const.iszero_int_float c ->
eval (Exp.UnOp(Neg, e2', None))
| _, Const c when Const.iszero_int_float c ->
e1'
| Const (Cint n), Const (Cint m) ->
Exp.int (n -- m)
| Const (Cfloat v), Const (Cfloat w) ->
Exp.float (v -. w)
| _, UnOp (Neg, f2, _) ->
eval (e1 +++ f2)
| _ , Const(Cint n) ->
eval (e1' +++ (Exp.int (IntLit.neg n)))
| Const _, _ ->
e1' --- e2'
| Var _, Var _ ->
e1' --- e2'
| _, _ ->
if abs then Exp.get_undefined false else e1' --- e2'
end
| BinOp (MinusPP, e1, e2) ->
if abs then Exp.get_undefined false
else BinOp (MinusPP, eval e1, eval e2)
| BinOp (Mult, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin
match e1', e2' with
| Const c, _ when Const.iszero_int_float c ->
Exp.zero
| Const c, _ when Const.isone_int_float c ->
e2'
| Const c, _ when Const.isminusone_int_float c ->
eval (Exp.UnOp (Neg, e2', None))
| _, Const c when Const.iszero_int_float c ->
Exp.zero
| _, Const c when Const.isone_int_float c ->
e1'
| _, Const c when Const.isminusone_int_float c ->
eval (Exp.UnOp (Neg, e1', None))
| Const (Cint n), Const (Cint m) ->
Exp.int (IntLit.mul n m)
| Const (Cfloat v), Const (Cfloat w) ->
Exp.float (v *. w)
| Var _, Var _ ->
BinOp(Mult, e1', e2')
| _, Sizeof _
| Sizeof _, _ ->
BinOp(Mult, e1', e2')
| _, _ ->
if abs then Exp.get_undefined false else BinOp(Mult, e1', e2')
end
| BinOp (Div, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin
match e1', e2' with
| _, Const c when Const.iszero_int_float c ->
Exp.get_undefined false
| Const c, _ when Const.iszero_int_float c ->
e1'
| _, Const c when Const.isone_int_float c ->
e1'
| Const (Cint n), Const (Cint m) ->
Exp.int (IntLit.div n m)
| Const (Cfloat v), Const (Cfloat w) ->
Exp.float (v /.w)
| Sizeof (Tarray (elt, _), Some len, _), Sizeof (elt2, None, _)
(* pattern: sizeof(elt[len]) / sizeof(elt) = len *)
when Typ.equal elt elt2 ->
len
| Sizeof (Tarray (elt, Some len), None, _), Sizeof (elt2, None, _)
(* pattern: sizeof(elt[len]) / sizeof(elt) = len *)
when Typ.equal elt elt2 ->
Const (Cint len)
| _ ->
if abs then Exp.get_undefined false else BinOp (Div, e1', e2')
end
| BinOp (Mod, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin
match e1', e2' with
| _, Const (Cint i) when IntLit.iszero i ->
Exp.get_undefined false
| Const (Cint i), _ when IntLit.iszero i ->
e1'
| _, Const (Cint i) when IntLit.isone i ->
Exp.zero
| Const (Cint n), Const (Cint m) ->
Exp.int (IntLit.rem n m)
| _ ->
if abs then Exp.get_undefined false else BinOp (Mod, e1', e2')
end
| BinOp (Shiftlt, e1, e2) ->
if abs then Exp.get_undefined false else BinOp (Shiftlt, eval e1, eval e2)
| BinOp (Shiftrt, e1, e2) ->
if abs then Exp.get_undefined false else BinOp (Shiftrt, eval e1, eval e2)
| BinOp (BAnd, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin match e1', e2' with
| Const (Cint i), _ when IntLit.iszero i ->
e1'
| _, Const (Cint i) when IntLit.iszero i ->
e2'
| Const (Cint i1), Const(Cint i2) ->
Exp.int (IntLit.logand i1 i2)
| _ ->
if abs then Exp.get_undefined false else BinOp (BAnd, e1', e2')
end
| BinOp (BOr, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin match e1', e2' with
| Const (Cint i), _ when IntLit.iszero i ->
e2'
| _, Const (Cint i) when IntLit.iszero i ->
e1'
| Const (Cint i1), Const(Cint i2) ->
Exp.int (IntLit.logor i1 i2)
| _ ->
if abs then Exp.get_undefined false else BinOp (BOr, e1', e2')
end
| BinOp (BXor, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin match e1', e2' with
| Const (Cint i), _ when IntLit.iszero i ->
e2'
| _, Const (Cint i) when IntLit.iszero i ->
e1'
| Const (Cint i1), Const(Cint i2) ->
Exp.int (IntLit.logxor i1 i2)
| _ ->
if abs then Exp.get_undefined false else BinOp (BXor, e1', e2')
end
| BinOp (PtrFld, e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
begin
match e2' with
| Const (Cptr_to_fld (fn, typ)) ->
eval (Exp.Lfield(e1', fn, typ))
| Const (Cint i) when IntLit.iszero i ->
Exp.zero (* cause a NULL dereference *)
| _ -> BinOp (PtrFld, e1', e2')
end
| Exn _ ->
e
| Lvar _ ->
e
| Lfield (e1, fld, typ) ->
let e1' = eval e1 in
Lfield (e1', fld, typ)
| Lindex(Lvar pv, e2) when false
(* removed: it interferes with re-arrangement and error messages *)
-> (* &x[n] --> &x + n *)
eval (Exp.BinOp (PlusPI, Lvar pv, e2))
| Lindex (BinOp(PlusPI, ep, e1), e2) ->
(* array access with pointer arithmetic *)
let e' : Exp.t = BinOp (PlusA, e1, e2) in
eval (Exp.Lindex (ep, e'))
| Lindex (e1, e2) ->
let e1' = eval e1 in
let e2' = eval e2 in
Lindex(e1', e2') in
let e' = eval e in
(* L.d_str "sym_eval "; Sil.d_exp e; L.d_str" --> "; Sil.d_exp e'; L.d_ln (); *)
e'
let exp_normalize sub exp =
let exp' = Sil.exp_sub sub exp in
if !Config.abs_val >= 1 then sym_eval true exp'
else sym_eval false exp'
let texp_normalize sub (exp : Exp.t) : Exp.t = match exp with
| Sizeof (typ, len, st) ->
Sizeof (typ, Option.map (exp_normalize sub) len, st)
| _ ->
exp_normalize sub exp
let exp_normalize_noabs sub exp =
Config.run_with_abs_val_equal_zero (exp_normalize sub) exp
(** Turn an inequality expression into an atom *)
let mk_inequality (e : Exp.t) : Sil.atom =
match e with
| BinOp (Le, base, Const (Cint n)) ->
(* base <= n case *)
let nbase = exp_normalize_noabs Sil.sub_empty base in
(match nbase with
| BinOp(PlusA, base', Const (Cint n')) ->
let new_offset = Exp.int (n -- n') in
let new_e : Exp.t = BinOp (Le, base', new_offset) in
Aeq (new_e, Exp.one)
| BinOp(PlusA, Const (Cint n'), base') ->
let new_offset = Exp.int (n -- n') in
let new_e : Exp.t = BinOp (Le, base', new_offset) in
Aeq (new_e, Exp.one)
| BinOp(MinusA, base', Const (Cint n')) ->
let new_offset = Exp.int (n ++ n') in
let new_e : Exp.t = BinOp (Le, base', new_offset) in
Aeq (new_e, Exp.one)
| BinOp(MinusA, Const (Cint n'), base') ->
let new_offset = Exp.int (n' -- n -- IntLit.one) in
let new_e : Exp.t = BinOp (Lt, new_offset, base') in
Aeq (new_e, Exp.one)
| UnOp(Neg, new_base, _) ->
(* In this case, base = -new_base. Construct -n-1 < new_base. *)
let new_offset = Exp.int (IntLit.zero -- n -- IntLit.one) in
let new_e : Exp.t = BinOp (Lt, new_offset, new_base) in
Aeq (new_e, Exp.one)
| _ ->
Aeq (e, Exp.one))
| BinOp (Lt, Const (Cint n), base) ->
(* n < base case *)
let nbase = exp_normalize_noabs Sil.sub_empty base in
(match nbase with
| BinOp(PlusA, base', Const (Cint n')) ->
let new_offset = Exp.int (n -- n') in
let new_e : Exp.t = BinOp (Lt, new_offset, base') in
Aeq (new_e, Exp.one)
| BinOp(PlusA, Const (Const.Cint n'), base') ->
let new_offset = Exp.int (n -- n') in
let new_e : Exp.t = BinOp (Lt, new_offset, base') in
Aeq (new_e, Exp.one)
| BinOp(MinusA, base', Const (Cint n')) ->
let new_offset = Exp.int (n ++ n') in
let new_e : Exp.t = BinOp (Lt, new_offset, base') in
Aeq (new_e, Exp.one)
| BinOp(MinusA, Const (Cint n'), base') ->
let new_offset = Exp.int (n' -- n -- IntLit.one) in
let new_e : Exp.t = BinOp (Le, base', new_offset) in
Aeq (new_e, Exp.one)
| UnOp(Neg, new_base, _) ->
(* In this case, base = -new_base. Construct new_base <= -n-1 *)
let new_offset = Exp.int (IntLit.zero -- n -- IntLit.one) in
let new_e : Exp.t = BinOp (Le, new_base, new_offset) in
Aeq (new_e, Exp.one)
| _ ->
Aeq (e, Exp.one))
| _ ->
Aeq (e, Exp.one)
(** Normalize an inequality *)
let inequality_normalize (a : Sil.atom) =
(* turn an expression into a triple (pos,neg,off) of positive and negative occurrences, and
integer offset representing inequality [sum(pos) - sum(neg) + off <= 0] *)
let rec exp_to_posnegoff (e : Exp.t) = match e with
| Const (Cint n) ->
[],[], n
| BinOp(PlusA, e1, e2) | BinOp(PlusPI, e1, e2) ->
let pos1, neg1, n1 = exp_to_posnegoff e1 in
let pos2, neg2, n2 = exp_to_posnegoff e2 in
(pos1@pos2, neg1@neg2, n1 ++ n2)
| BinOp(MinusA, e1, e2)
| BinOp(MinusPI, e1, e2)
| BinOp(MinusPP, e1, e2) ->
let pos1, neg1, n1 = exp_to_posnegoff e1 in
let pos2, neg2, n2 = exp_to_posnegoff e2 in
(pos1@neg2, neg1@pos2, n1 -- n2)
| UnOp(Neg, e1, _) ->
let pos1, neg1, n1 = exp_to_posnegoff e1 in
(neg1, pos1, IntLit.zero -- n1)
| _ -> [e],[], IntLit.zero in
(* sort and filter out expressions appearing in both the positive and negative part *)
let normalize_posnegoff (pos, neg, off) =
let pos' = IList.sort Exp.compare pos in
let neg' = IList.sort Exp.compare neg in
let rec combine pacc nacc = function
| x:: ps, y:: ng ->
(match Exp.compare x y with
| n when n < 0 -> combine (x:: pacc) nacc (ps, y :: ng)
| 0 -> combine pacc nacc (ps, ng)
| _ -> combine pacc (y:: nacc) (x :: ps, ng))
| ps, ng -> (IList.rev pacc) @ ps, (IList.rev nacc) @ ng in
let pos'', neg'' = combine [] [] (pos', neg') in
(pos'', neg'', off) in
(* turn a non-empty list of expressions into a sum expression *)
let rec exp_list_to_sum : Exp.t list -> Exp.t = function
| [] -> assert false
| [e] -> e
| e:: el -> BinOp(PlusA, e, exp_list_to_sum el) in
let norm_from_exp e : Exp.t =
match normalize_posnegoff (exp_to_posnegoff e) with
| [],[], n ->
BinOp(Le, Exp.int n, Exp.zero)
| [], neg, n ->
BinOp(Lt, Exp.int (n -- IntLit.one), exp_list_to_sum neg)
| pos, [], n ->
BinOp(Le, exp_list_to_sum pos, Exp.int (IntLit.zero -- n))
| pos, neg, n ->
let lhs_e : Exp.t = BinOp(MinusA, exp_list_to_sum pos, exp_list_to_sum neg) in
BinOp(Le, lhs_e, Exp.int (IntLit.zero -- n)) in
let ineq = match a with
| Aeq (ineq, Const (Cint i)) when IntLit.isone i ->
ineq
| _ -> assert false in
match ineq with
| BinOp(Le, e1, e2) ->
let e : Exp.t = BinOp(MinusA, e1, e2) in
mk_inequality (norm_from_exp e)
| BinOp(Lt, e1, e2) ->
let e : Exp.t = BinOp(MinusA, BinOp(MinusA, e1, e2), Exp.minus_one) in
mk_inequality (norm_from_exp e)
| _ -> a
(** Normalize an atom.
We keep the convention that inequalities with constants
are only of the form [e <= n] and [n < e]. *)
let atom_normalize sub a0 =
let a = Sil.atom_sub sub a0 in
let rec normalize_eq (eq : Exp.t * Exp.t) = match eq with
| BinOp(PlusA, e1, Const (Cint n1)), Const (Cint n2)
(* e1+n1==n2 ---> e1==n2-n1 *)
| BinOp(PlusPI, e1, Const (Cint n1)), Const (Cint n2) ->
(e1, Exp.int (n2 -- n1))
| BinOp(MinusA, e1, Const (Cint n1)), Const (Cint n2)
(* e1-n1==n2 ---> e1==n1+n2 *)
| BinOp(MinusPI, e1, Const (Cint n1)), Const (Cint n2) ->
(e1, Exp.int (n1 ++ n2))
| BinOp(MinusA, Const (Cint n1), e1), Const (Cint n2) ->
(* n1-e1 == n2 -> e1==n1-n2 *)
(e1, Exp.int (n1 -- n2))
| Lfield (e1', fld1, _), Lfield (e2', fld2, _) ->
if Ident.fieldname_equal fld1 fld2
then normalize_eq (e1', e2')
else eq
| Lindex (e1', idx1), Lindex (e2', idx2) ->
if Exp.equal idx1 idx2 then normalize_eq (e1', e2')
else if Exp.equal e1' e2' then normalize_eq (idx1, idx2)
else eq
| _ -> eq in
let handle_unary_negation (e1 : Exp.t) (e2 : Exp.t) =
match e1, e2 with
| UnOp (LNot, e1', _), Const (Cint i)
| Const (Cint i), UnOp (LNot, e1', _) when IntLit.iszero i ->
(e1', Exp.zero, true)
| _ -> (e1, e2, false) in
let handle_boolean_operation from_equality e1 e2 : Sil.atom =
let ne1 = exp_normalize sub e1 in
let ne2 = exp_normalize sub e2 in
let ne1', ne2', op_negated = handle_unary_negation ne1 ne2 in
let (e1', e2') = normalize_eq (ne1', ne2') in
let (e1'', e2'') = exp_reorder e1' e2' in
let use_equality =
if op_negated then not from_equality else from_equality in
if use_equality then
Aeq (e1'', e2'')
else
Aneq (e1'', e2'') in
let a' : Sil.atom = match a with
| Aeq (e1, e2) ->
handle_boolean_operation true e1 e2
| Aneq (e1, e2) ->
handle_boolean_operation false e1 e2
| Apred (a, es) ->
Apred (a, IList.map (fun e -> exp_normalize sub e) es)
| Anpred (a, es) ->
Anpred (a, IList.map (fun e -> exp_normalize sub e) es) in
if atom_is_inequality a' then inequality_normalize a' else a'
let normalize_and_strengthen_atom (p : normal t) (a : Sil.atom) : Sil.atom =
let a' = atom_normalize p.sub a in
match a' with
| Aeq (BinOp (Le, Var id, Const (Cint n)), Const (Cint i))
when IntLit.isone i ->
let lower = Exp.int (n -- IntLit.one) in
let a_lower : Sil.atom = Aeq (BinOp (Lt, lower, Var id), Exp.one) in
if not (IList.mem Sil.atom_equal a_lower p.pi) then a'
else Aeq (Var id, Exp.int n)
| Aeq (BinOp (Lt, Const (Cint n), Var id), Const (Cint i))
when IntLit.isone i ->
let upper = Exp.int (n ++ IntLit.one) in
let a_upper : Sil.atom = Aeq (BinOp (Le, Var id, upper), Exp.one) in
if not (IList.mem Sil.atom_equal a_upper p.pi) then a'
else Aeq (Var id, upper)
| Aeq (BinOp (Ne, e1, e2), Const (Cint i)) when IntLit.isone i ->
Aneq (e1, e2)
| _ -> a'
let rec strexp_normalize sub (se : Sil.strexp) : Sil.strexp =
match se with
| Eexp (e, inst) ->
Eexp (exp_normalize sub e, inst)
| Estruct (fld_cnts, inst) ->
begin
match fld_cnts with
| [] -> se
| _ ->
let fld_cnts' =
IList.map (fun (fld, cnt) ->
fld, strexp_normalize sub cnt) fld_cnts in
let fld_cnts'' = IList.sort Sil.fld_strexp_compare fld_cnts' in
Estruct (fld_cnts'', inst)
end
| Earray (len, idx_cnts, inst) ->
begin
let len' = exp_normalize_noabs sub len in
match idx_cnts with
| [] ->
if Exp.equal len len' then se else Earray (len', idx_cnts, inst)
| _ ->
let idx_cnts' =
IList.map (fun (idx, cnt) ->
let idx' = exp_normalize sub idx in
idx', strexp_normalize sub cnt) idx_cnts in
let idx_cnts'' =
IList.sort Sil.exp_strexp_compare idx_cnts' in
Earray (len', idx_cnts'', inst)
end
(** Exp.Construct a pointsto. *)
let mk_ptsto lexp sexp te : Sil.hpred =
let nsexp = strexp_normalize Sil.sub_empty sexp in
Hpointsto(lexp, nsexp, te)
(** Construct a points-to predicate for an expression using
either the provided expression [name] as
base for fresh identifiers. If [expand_structs] is true,
initialize the fields of structs with fresh variables. *)
let mk_ptsto_exp tenvo struct_init_mode (exp, (te : Exp.t), expo) inst : Sil.hpred =
let default_strexp () : Sil.strexp = match te with
| Sizeof (typ, len, _) ->
create_strexp_of_type tenvo struct_init_mode typ len inst
| Var _ ->
Estruct ([], inst)
| te ->
L.err "trying to create ptsto with type: %a@\n@." (Sil.pp_texp_full pe_text) te;
assert false in
let strexp : Sil.strexp = match expo with
| Some e -> Eexp (e, inst)
| None -> default_strexp () in
mk_ptsto exp strexp te
let rec hpred_normalize sub (hpred : Sil.hpred) : Sil.hpred =
let replace_hpred hpred' =
L.d_strln "found array with sizeof(..) size";
L.d_str "converting original hpred: "; Sil.d_hpred hpred; L.d_ln ();
L.d_str "into the following: "; Sil.d_hpred hpred'; L.d_ln ();
hpred' in
match hpred with
| Hpointsto (root, cnt, te) ->
let normalized_root = exp_normalize sub root in
let normalized_cnt = strexp_normalize sub cnt in
let normalized_te = texp_normalize sub te in
begin match normalized_cnt, normalized_te with
| Earray (Exp.Sizeof _ as size, [], inst), Sizeof (Tarray _, _, _) ->
(* check for an empty array whose size expression is (Sizeof type), and turn the array
into a strexp of the given type *)
let hpred' = mk_ptsto_exp None Fld_init (root, size, None) inst in
replace_hpred hpred'
| (Earray (BinOp (Mult, Sizeof (t, None, st1), x), esel, inst)
| Earray (BinOp (Mult, x, Sizeof (t, None, st1)), esel, inst)),
Sizeof (Tarray (elt, _) as arr, _, _)
when Typ.equal t elt ->
let len = Some x in
let hpred' =
mk_ptsto_exp None Fld_init (root, Sizeof (arr, len, st1), None) inst in
replace_hpred (replace_array_contents hpred' esel)
| ( Earray (BinOp (Mult, Sizeof (t, Some len, st1), x), esel, inst)
| Earray (BinOp (Mult, x, Sizeof (t, Some len, st1)), esel, inst)),
Sizeof (Tarray (elt, _) as arr, _, _)
when Typ.equal t elt ->
let len = Some (Exp.BinOp(Mult, x, len)) in
let hpred' =
mk_ptsto_exp None Fld_init (root, Sizeof (arr, len, st1), None) inst in
replace_hpred (replace_array_contents hpred' esel)
| _ ->
Hpointsto (normalized_root, normalized_cnt, normalized_te)
end
| Hlseg (k, para, e1, e2, elist) ->
let normalized_e1 = exp_normalize sub e1 in
let normalized_e2 = exp_normalize sub e2 in
let normalized_elist = IList.map (exp_normalize sub) elist in
let normalized_para = hpara_normalize para in
Hlseg (k, normalized_para, normalized_e1, normalized_e2, normalized_elist)
| Hdllseg (k, para, e1, e2, e3, e4, elist) ->
let norm_e1 = exp_normalize sub e1 in
let norm_e2 = exp_normalize sub e2 in
let norm_e3 = exp_normalize sub e3 in
let norm_e4 = exp_normalize sub e4 in
let norm_elist = IList.map (exp_normalize sub) elist in
let norm_para = hpara_dll_normalize para in
Hdllseg (k, norm_para, norm_e1, norm_e2, norm_e3, norm_e4, norm_elist)
and hpara_normalize (para : Sil.hpara) =
let normalized_body = IList.map (hpred_normalize Sil.sub_empty) (para.body) in
let sorted_body = IList.sort Sil.hpred_compare normalized_body in
{ para with body = sorted_body }
and hpara_dll_normalize (para : Sil.hpara_dll) =
let normalized_body = IList.map (hpred_normalize Sil.sub_empty) (para.body_dll) in
let sorted_body = IList.sort Sil.hpred_compare normalized_body in
{ para with body_dll = sorted_body }
let sigma_normalize sub sigma =
let sigma' =
IList.stable_sort Sil.hpred_compare (IList.map (hpred_normalize sub) sigma) in
if sigma_equal sigma sigma' then sigma else sigma'
let pi_tighten_ineq pi =
let ineq_list, nonineq_list = IList.partition atom_is_inequality pi in
let diseq_list =
let get_disequality_info acc (a : Sil.atom) = match a with
| Aneq (Const (Cint n), e)
| Aneq(e, Const (Cint n)) -> (e, n) :: acc
| _ -> acc in
IList.fold_left get_disequality_info [] nonineq_list in
let is_neq e n =
IList.exists (fun (e', n') -> Exp.equal e e' && IntLit.eq n n') diseq_list in
let le_list_tightened =
let get_le_inequality_info acc a =
match atom_exp_le_const a with
| Some (e, n) -> (e, n):: acc
| _ -> acc in
let rec le_tighten le_list_done = function
| [] -> IList.rev le_list_done
| (e, n):: le_list_todo -> (* e <= n *)
if is_neq e n then le_tighten le_list_done ((e, n -- IntLit.one):: le_list_todo)
else le_tighten ((e, n):: le_list_done) (le_list_todo) in
let le_list = IList.rev (IList.fold_left get_le_inequality_info [] ineq_list) in
le_tighten [] le_list in
let lt_list_tightened =
let get_lt_inequality_info acc a =
match atom_const_lt_exp a with
| Some (n, e) -> (n, e):: acc
| _ -> acc in
let rec lt_tighten lt_list_done = function
| [] -> IList.rev lt_list_done
| (n, e):: lt_list_todo -> (* n < e *)
let n_plus_one = n ++ IntLit.one in
if is_neq e n_plus_one
then lt_tighten lt_list_done ((n ++ IntLit.one, e):: lt_list_todo)
else lt_tighten ((n, e):: lt_list_done) (lt_list_todo) in
let lt_list = IList.rev (IList.fold_left get_lt_inequality_info [] ineq_list) in
lt_tighten [] lt_list in
let ineq_list' =
let le_ineq_list =
IList.map
(fun (e, n) -> mk_inequality (BinOp(Le, e, Exp.int n)))
le_list_tightened in
let lt_ineq_list =
IList.map
(fun (n, e) -> mk_inequality (BinOp(Lt, Exp.int n, e)))
lt_list_tightened in
le_ineq_list @ lt_ineq_list in
let nonineq_list' =
IList.filter
(fun (a : Sil.atom) -> match a with
| Aneq (Const (Cint n), e)
| Aneq (e, Const (Cint n)) ->
(not (IList.exists
(fun (e', n') -> Exp.equal e e' && IntLit.lt n' n)
le_list_tightened)) &&
(not (IList.exists
(fun (n', e') -> Exp.equal e e' && IntLit.leq n n')
lt_list_tightened))
| _ -> true)
nonineq_list in
(ineq_list', nonineq_list')
(** Normalization of pi.
The normalization filters out obviously - true disequalities, such as e <> e + 1. *)
let pi_normalize sub sigma pi0 =
let pi = IList.map (atom_normalize sub) pi0 in
let ineq_list, nonineq_list = pi_tighten_ineq pi in
let syntactically_different : Exp.t * Exp.t -> bool = function
| BinOp(op1, e1, Const c1), BinOp(op2, e2, Const c2)
when Exp.equal e1 e2 ->
Binop.equal op1 op2 && Binop.injective op1 && not (Const.equal c1 c2)
| e1, BinOp(op2, e2, Const c2)
when Exp.equal e1 e2 ->
Binop.injective op2 &&
Binop.is_zero_runit op2 &&
not (Const.equal (Cint IntLit.zero) c2)
| BinOp(op1, e1, Const c1), e2
when Exp.equal e1 e2 ->
Binop.injective op1 &&
Binop.is_zero_runit op1 &&
not (Const.equal (Cint IntLit.zero) c1)
| _ -> false in
let filter_useful_atom : Sil.atom -> bool =
let unsigned_exps = lazy (sigma_get_unsigned_exps sigma) in
function
| Aneq ((Var _) as e, Const (Cint n)) when IntLit.isnegative n ->
not (IList.exists (Exp.equal e) (Lazy.force unsigned_exps))
| Aneq (e1, e2) ->
not (syntactically_different (e1, e2))
| Aeq (Const c1, Const c2) ->
not (Const.equal c1 c2)
| _ -> true in
let pi' =
IList.stable_sort
Sil.atom_compare
((IList.filter filter_useful_atom nonineq_list) @ ineq_list) in
let pi'' = pi_sorted_remove_redundant pi' in
if pi_equal pi0 pi'' then pi0 else pi''
(** normalize the footprint part, and rename any primed vars
in the footprint with fresh footprint vars *)
let footprint_normalize prop =
let nsigma = sigma_normalize Sil.sub_empty prop.sigma_fp in
let npi = pi_normalize Sil.sub_empty nsigma prop.pi_fp in
let fp_vars =
let fav = pi_fav npi in
sigma_fav_add fav nsigma;
fav in
(* TODO (t4893479): make this check less angelic *)
if Sil.fav_exists fp_vars Ident.is_normal && not Config.angelic_execution then
begin
L.d_strln "footprint part contains normal variables";
d_pi npi; L.d_ln ();
d_sigma nsigma; L.d_ln ();
assert false
end;
Sil.fav_filter_ident fp_vars Ident.is_primed; (* only keep primed vars *)
let npi', nsigma' =
if Sil.fav_is_empty fp_vars then npi, nsigma
else (* replace primed vars by fresh footprint vars *)
let ids_primed = Sil.fav_to_list fp_vars in
let ids_footprint =
IList.map (fun id -> (id, Ident.create_fresh Ident.kfootprint)) ids_primed in
let ren_sub =
Sil.sub_of_list (IList.map (fun (id1, id2) -> (id1, Exp.Var id2)) ids_footprint) in
let nsigma' = sigma_normalize Sil.sub_empty (sigma_sub ren_sub nsigma) in
let npi' = pi_normalize Sil.sub_empty nsigma' (pi_sub ren_sub npi) in
(npi', nsigma') in
set prop ~pi_fp:npi' ~sigma_fp:nsigma'
(** This function assumes that if (x,Exp.Var(y)) in sub, then compare x y = 1 *)
let sub_normalize sub =
let f (id, e) = (not (Ident.is_primed id)) && (not (Sil.ident_in_exp id e)) in
let sub' = Sil.sub_filter_pair f sub in
if Sil.sub_equal sub sub' then sub else sub'
(** Conjoin a pure atomic predicate by normal conjunction. *)
let rec prop_atom_and ?(footprint=false) (p : normal t) a : normal t =
let a' = normalize_and_strengthen_atom p a in
if IList.mem Sil.atom_equal a' p.pi then p
else begin
let p' =
match a' with
| Aeq (Var i, e) when Sil.ident_in_exp i e -> p
| Aeq (Var i, e) ->
let sub_list = [(i, e)] in
let mysub = Sil.sub_of_list sub_list in
let p_sub = Sil.sub_filter (fun i' -> not (Ident.equal i i')) p.sub in
let sub' = Sil.sub_join mysub (Sil.sub_range_map (Sil.exp_sub mysub) p_sub) in
let (nsub', npi', nsigma') =
let nsigma' = sigma_normalize sub' p.sigma in
(sub_normalize sub', pi_normalize sub' nsigma' p.pi, nsigma') in
let (eqs_zero, nsigma'') = sigma_remove_emptylseg nsigma' in
let p' =
unsafe_cast_to_normal
(set p ~sub:nsub' ~pi:npi' ~sigma:nsigma'') in
IList.fold_left (prop_atom_and ~footprint) p' eqs_zero
| Aeq (e1, e2) when (Exp.compare e1 e2 = 0) ->
p
| Aneq (e1, e2) ->
let sigma' = sigma_intro_nonemptylseg e1 e2 p.sigma in
let pi' = pi_normalize p.sub sigma' (a':: p.pi) in
unsafe_cast_to_normal
(set p ~pi:pi' ~sigma:sigma')
| _ ->
let pi' = pi_normalize p.sub p.sigma (a':: p.pi) in
unsafe_cast_to_normal
(set p ~pi:pi') in
if not footprint then p'
else begin
let fav_a' = Sil.atom_fav a' in
let fav_nofootprint_a' =
Sil.fav_copy_filter_ident fav_a' (fun id -> not (Ident.is_footprint id)) in
let predicate_warning =
not (Sil.fav_is_empty fav_nofootprint_a') in
let p'' =
if predicate_warning then footprint_normalize p'
else
match a' with
| Aeq (Exp.Var i, e) when not (Sil.ident_in_exp i e) ->
let mysub = Sil.sub_of_list [(i, e)] in
let sigma_fp' = sigma_normalize mysub p'.sigma_fp in
let pi_fp' = a' :: pi_normalize mysub sigma_fp' p'.pi_fp in
footprint_normalize
(set p' ~pi_fp:pi_fp' ~sigma_fp:sigma_fp')
| _ ->
footprint_normalize
(set p' ~pi_fp:(a' :: p'.pi_fp)) in
if predicate_warning then (L.d_warning "dropping non-footprint "; Sil.d_atom a'; L.d_ln ());
unsafe_cast_to_normal p''
end
end
(** normalize a prop *)
let normalize (eprop : 'a t) : normal t =
let p0 =
unsafe_cast_to_normal
(set prop_emp ~sigma: (sigma_normalize Sil.sub_empty eprop.sigma)) in
let nprop = IList.fold_left prop_atom_and p0 (get_pure eprop) in
unsafe_cast_to_normal
(footprint_normalize (set nprop ~pi_fp:eprop.pi_fp ~sigma_fp:eprop.sigma_fp))
end
(* End of module Normalize *)
let exp_normalize_prop prop exp =
Config.run_with_abs_val_equal_zero (Normalize.exp_normalize prop.sub) exp
let lexp_normalize_prop p lexp =
let root = Exp.root_of_lexp lexp in
let offsets = Sil.exp_get_offsets lexp in
let nroot = exp_normalize_prop p root in
let noffsets =
IList.map (fun (n : Sil.offset) -> match n with
| Off_fld _ ->
n
| Off_index e ->
Sil.Off_index (exp_normalize_prop p e)
) offsets in
Sil.exp_add_offsets nroot noffsets
let atom_normalize_prop prop atom =
Config.run_with_abs_val_equal_zero (Normalize.atom_normalize prop.sub) atom
let strexp_normalize_prop prop strexp =
Config.run_with_abs_val_equal_zero (Normalize.strexp_normalize prop.sub) strexp
let hpred_normalize_prop prop hpred =
Config.run_with_abs_val_equal_zero (Normalize.hpred_normalize prop.sub) hpred
let sigma_normalize_prop prop sigma =
Config.run_with_abs_val_equal_zero (Normalize.sigma_normalize prop.sub) sigma
let pi_normalize_prop prop pi =
Config.run_with_abs_val_equal_zero (Normalize.pi_normalize prop.sub prop.sigma) pi
let sigma_replace_exp epairs sigma =
let sigma' = IList.map (Sil.hpred_replace_exp epairs) sigma in
Normalize.sigma_normalize Sil.sub_empty sigma'
(** Construct an atom. *)
let mk_atom atom =
Config.run_with_abs_val_equal_zero (fun () -> Normalize.atom_normalize Sil.sub_empty atom) ()
(** Exp.Construct a disequality. *)
let mk_neq e1 e2 = mk_atom (Aneq (e1, e2))
(** Exp.Construct an equality. *)
let mk_eq e1 e2 = mk_atom (Aeq (e1, e2))
(** Construct a pred. *)
let mk_pred a es = mk_atom (Apred (a, es))
(** Construct a negated pred. *)
let mk_npred a es = mk_atom (Anpred (a, es))
(** Exp.Construct a lseg predicate *)
let mk_lseg k para e_start e_end es_shared : Sil.hpred =
let npara = Normalize.hpara_normalize para in
Hlseg (k, npara, e_start, e_end, es_shared)
(** Exp.Construct a dllseg predicate *)
let mk_dllseg k para exp_iF exp_oB exp_oF exp_iB exps_shared : Sil.hpred =
let npara = Normalize.hpara_dll_normalize para in
Hdllseg (k, npara, exp_iF, exp_oB , exp_oF, exp_iB, exps_shared)
(** Exp.Construct a hpara *)
let mk_hpara root next svars evars body =
let para =
{ Sil.root = root;
next = next;
svars = svars;
evars = evars;
body = body } in
Normalize.hpara_normalize para
(** Exp.Construct a dll_hpara *)
let mk_dll_hpara iF oB oF svars evars body =
let para =
{ Sil.cell = iF;
blink = oB;
flink = oF;
svars_dll = svars;
evars_dll = evars;
body_dll = body } in
Normalize.hpara_dll_normalize para
(** Construct a points-to predicate for a single program variable.
If [expand_structs] is true, initialize the fields of structs with fresh variables. *)
let mk_ptsto_lvar tenv expand_structs inst ((pvar: Pvar.t), texp, expo) : Sil.hpred =
Normalize.mk_ptsto_exp tenv expand_structs (Lvar pvar, texp, expo) inst
(** Conjoin [exp1]=[exp2] with a symbolic heap [prop]. *)
let conjoin_eq ?(footprint = false) exp1 exp2 prop =
Normalize.prop_atom_and ~footprint prop (Aeq(exp1, exp2))
(** Conjoin [exp1!=exp2] with a symbolic heap [prop]. *)
let conjoin_neq ?(footprint = false) exp1 exp2 prop =
Normalize.prop_atom_and ~footprint prop (Aneq (exp1, exp2))
(** Reset every inst in the prop using the given map *)
let prop_reset_inst inst_map prop =
let sigma' = IList.map (Sil.hpred_instmap inst_map) prop.sigma in
let sigma_fp' = IList.map (Sil.hpred_instmap inst_map) prop.sigma_fp in
set prop ~sigma:sigma' ~sigma_fp:sigma_fp'
(** {1 Functions for transforming footprints into propositions.} *)
(** The ones used for abstraction add/remove local stacks in order to
stop the firing of some abstraction rules. The other usual
transforation functions do not use this hack. *)
(** Extract the footprint and return it as a prop *)
let extract_footprint p =
set prop_emp ~pi:p.pi_fp ~sigma:p.sigma_fp
(** Extract the (footprint,current) pair *)
let extract_spec (p : normal t) : normal t * normal t =
let pre = extract_footprint p in
let post = set p ~pi_fp:[] ~sigma_fp:[] in
(unsafe_cast_to_normal pre, unsafe_cast_to_normal post)
(** [prop_set_fooprint p p_foot] sets proposition [p_foot] as footprint of [p]. *)
let prop_set_footprint p p_foot =
let pi =
(IList.map
(fun (i, e) -> Sil.Aeq(Var i, e))
(Sil.sub_to_list p_foot.sub)) @ p_foot.pi in
set p ~pi_fp:pi ~sigma_fp:p_foot.sigma
(** {2 Functions for renaming primed variables by "canonical names"} *)
module ExpStack : sig
val init : Exp.t list -> unit
val final : unit -> unit
val is_empty : unit -> bool
val push : Exp.t -> unit
val pop : unit -> Exp.t
end = struct
let stack = Stack.create ()
let init es =
Stack.clear stack;
IList.iter (fun e -> Stack.push e stack) (IList.rev es)
let final () = Stack.clear stack
let is_empty () = Stack.is_empty stack
let push e = Stack.push e stack
let pop () = Stack.pop stack
end
let sigma_get_start_lexps_sort sigma =
let exp_compare_neg e1 e2 = - (Exp.compare e1 e2) in
let filter e = Sil.fav_for_all (Sil.exp_fav e) Ident.is_normal in
let lexps = Sil.hpred_list_get_lexps filter sigma in
IList.sort exp_compare_neg lexps
let sigma_dfs_sort sigma =
let init () =
let start_lexps = sigma_get_start_lexps_sort sigma in
ExpStack.init start_lexps in
let final () = ExpStack.final () in
let rec handle_strexp (se : Sil.strexp) = match se with
| Eexp (e, _) ->
ExpStack.push e
| Estruct (fld_se_list, _) ->
IList.iter (fun (_, se) -> handle_strexp se) fld_se_list
| Earray (_, idx_se_list, _) ->
IList.iter (fun (_, se) -> handle_strexp se) idx_se_list in
let rec handle_e visited seen e (sigma : sigma) = match sigma with
| [] -> (visited, IList.rev seen)
| hpred :: cur ->
begin
match hpred with
| Hpointsto (e', se, _) when Exp.equal e e' ->
handle_strexp se;
(hpred:: visited, IList.rev_append cur seen)
| Hlseg (_, _, root, next, shared) when Exp.equal e root ->
IList.iter ExpStack.push (next:: shared);
(hpred:: visited, IList.rev_append cur seen)
| Hdllseg (_, _, iF, oB, oF, iB, shared)
when Exp.equal e iF || Exp.equal e iB ->
IList.iter ExpStack.push (oB:: oF:: shared);
(hpred:: visited, IList.rev_append cur seen)
| _ ->
handle_e visited (hpred:: seen) e cur
end in
let rec handle_sigma visited = function
| [] -> IList.rev visited
| cur ->
if ExpStack.is_empty () then
let cur' = Normalize.sigma_normalize Sil.sub_empty cur in
IList.rev_append cur' visited
else
let e = ExpStack.pop () in
let (visited', cur') = handle_e visited [] e cur in
handle_sigma visited' cur' in
init ();
let sigma' = handle_sigma [] sigma in
final ();
sigma'
let prop_dfs_sort p =
let sigma = p.sigma in
let sigma' = sigma_dfs_sort sigma in
let sigma_fp = p.sigma_fp in
let sigma_fp' = sigma_dfs_sort sigma_fp in
let p' = set p ~sigma:sigma' ~sigma_fp:sigma_fp' in
(* L.err "@[<2>P SORTED:@\n%a@\n@." pp_prop p'; *)
p'
let prop_fav_add_dfs fav prop =
prop_fav_add fav (prop_dfs_sort prop)
let rec strexp_get_array_indices acc (se : Sil.strexp) = match se with
| Eexp _ ->
acc
| Estruct (fsel, _) ->
let se_list = IList.map snd fsel in
IList.fold_left strexp_get_array_indices acc se_list
| Earray (_, isel, _) ->
let acc_new = IList.fold_left (fun acc' (idx, _) -> idx:: acc') acc isel in
let se_list = IList.map snd isel in
IList.fold_left strexp_get_array_indices acc_new se_list
let hpred_get_array_indices acc (hpred : Sil.hpred) = match hpred with
| Hpointsto (_, se, _) ->
strexp_get_array_indices acc se
| Hlseg _ | Hdllseg _ ->
acc
let sigma_get_array_indices sigma =
let indices = IList.fold_left hpred_get_array_indices [] sigma in
IList.rev indices
let compute_reindexing fav_add get_id_offset list =
let rec select list_passed list_seen = function
| [] -> list_passed
| x :: list_rest ->
let id_offset_opt = get_id_offset x in
let list_passed_new = match id_offset_opt with
| None -> list_passed
| Some (id, _) ->
let fav = Sil.fav_new () in
IList.iter (fav_add fav) list_seen;
IList.iter (fav_add fav) list_passed;
if (Sil.fav_exists fav (Ident.equal id))
then list_passed
else (x:: list_passed) in
let list_seen_new = x:: list_seen in
select list_passed_new list_seen_new list_rest in
let list_passed = select [] [] list in
let transform x =
let id, offset = match get_id_offset x with None -> assert false | Some io -> io in
let base_new : Exp.t = Var (Ident.create_fresh Ident.kprimed) in
let offset_new = Exp.int (IntLit.neg offset) in
let exp_new : Exp.t = BinOp (PlusA, base_new, offset_new) in
(id, exp_new) in
let reindexing = IList.map transform list_passed in
Sil.sub_of_list reindexing
let compute_reindexing_from_indices indices =
let get_id_offset (e : Exp.t) = match e with
| BinOp (PlusA, Var id, Const(Cint offset)) ->
if Ident.is_primed id then Some (id, offset) else None
| _ -> None in
let fav_add = Sil.exp_fav_add in
compute_reindexing fav_add get_id_offset indices
let apply_reindexing subst prop =
let nsigma = Normalize.sigma_normalize subst prop.sigma in
let npi = Normalize.pi_normalize subst nsigma prop.pi in
let nsub, atoms =
let dom_subst = IList.map fst (Sil.sub_to_list subst) in
let in_dom_subst id = IList.exists (Ident.equal id) dom_subst in
let sub' = Sil.sub_filter (fun id -> not (in_dom_subst id)) prop.sub in
let contains_substituted_id e = Sil.fav_exists (Sil.exp_fav e) in_dom_subst in
let sub_eqs, sub_keep = Sil.sub_range_partition contains_substituted_id sub' in
let eqs = Sil.sub_to_list sub_eqs in
let atoms =
IList.map
(fun (id, e) -> Sil.Aeq (Var id, Normalize.exp_normalize subst e))
eqs in
(sub_keep, atoms) in
let p' =
unsafe_cast_to_normal
(set prop ~sub:nsub ~pi:npi ~sigma:nsigma) in
IList.fold_left Normalize.prop_atom_and p' atoms
let prop_rename_array_indices prop =
if !Config.footprint then prop
else begin
let indices = sigma_get_array_indices prop.sigma in
let not_same_base_lt_offsets (e1 : Exp.t) (e2 : Exp.t) =
match e1, e2 with
| BinOp (PlusA, e1', Const (Cint n1')),
BinOp(PlusA, e2', Const (Cint n2')) ->
not (Exp.equal e1' e2' && IntLit.lt n1' n2')
| _ -> true in
let rec select_minimal_indices indices_seen = function
| [] -> IList.rev indices_seen
| index:: indices_rest ->
let indices_seen' = IList.filter (not_same_base_lt_offsets index) indices_seen in
let indices_seen_new = index:: indices_seen' in
let indices_rest_new = IList.filter (not_same_base_lt_offsets index) indices_rest in
select_minimal_indices indices_seen_new indices_rest_new in
let minimal_indices = select_minimal_indices [] indices in
let subst = compute_reindexing_from_indices minimal_indices in
apply_reindexing subst prop
end
let compute_renaming fav =
let ids = Sil.fav_to_list fav in
let ids_primed, ids_nonprimed = IList.partition Ident.is_primed ids in
let ids_footprint = IList.filter Ident.is_footprint ids_nonprimed in
let id_base_primed = Ident.create Ident.kprimed 0 in
let id_base_footprint = Ident.create Ident.kfootprint 0 in
let rec f id_base index ren_subst = function
| [] -> ren_subst
| id:: ids ->
let new_id = Ident.set_stamp id_base index in
if Ident.equal id new_id then
f id_base (index + 1) ren_subst ids
else
f id_base (index + 1) ((id, new_id):: ren_subst) ids in
let ren_primed = f id_base_primed 0 [] ids_primed in
let ren_footprint = f id_base_footprint 0 [] ids_footprint in
ren_primed @ ren_footprint
let rec idlist_assoc id = function
| [] -> raise Not_found
| (i, x):: l -> if Ident.equal i id then x else idlist_assoc id l
let ident_captured_ren ren id =
try (idlist_assoc id ren)
with Not_found -> id
(* If not defined in ren, id should be mapped to itself *)
let rec exp_captured_ren ren (e : Exp.t) : Exp.t = match e with
| Var id ->
Var (ident_captured_ren ren id)
| Exn e ->
Exn (exp_captured_ren ren e)
| Closure _ ->
e (* TODO: why captured vars not renamed? *)
| Const _ ->
e
| Sizeof (t, len, st) ->
Sizeof (t, Option.map (exp_captured_ren ren) len, st)
| Cast (t, e) ->
Cast (t, exp_captured_ren ren e)
| UnOp (op, e, topt) ->
UnOp (op, exp_captured_ren ren e, topt)
| BinOp (op, e1, e2) ->
let e1' = exp_captured_ren ren e1 in
let e2' = exp_captured_ren ren e2 in
BinOp (op, e1', e2')
| Lvar id ->
Lvar id
| Lfield (e, fld, typ) ->
Lfield (exp_captured_ren ren e, fld, typ)
| Lindex (e1, e2) ->
let e1' = exp_captured_ren ren e1 in
let e2' = exp_captured_ren ren e2 in
Lindex (e1', e2')
let atom_captured_ren ren (a : Sil.atom) : Sil.atom = match a with
| Aeq (e1, e2) ->
Aeq (exp_captured_ren ren e1, exp_captured_ren ren e2)
| Aneq (e1, e2) ->
Aneq (exp_captured_ren ren e1, exp_captured_ren ren e2)
| Apred (a, es) ->
Apred (a, IList.map (fun e -> exp_captured_ren ren e) es)
| Anpred (a, es) ->
Anpred (a, IList.map (fun e -> exp_captured_ren ren e) es)
let rec strexp_captured_ren ren (se : Sil.strexp) : Sil.strexp = match se with
| Eexp (e, inst) ->
Eexp (exp_captured_ren ren e, inst)
| Estruct (fld_se_list, inst) ->
let f (fld, se) = (fld, strexp_captured_ren ren se) in
Estruct (IList.map f fld_se_list, inst)
| Earray (len, idx_se_list, inst) ->
let f (idx, se) =
let idx' = exp_captured_ren ren idx in
(idx', strexp_captured_ren ren se) in
let len' = exp_captured_ren ren len in
Earray (len', IList.map f idx_se_list, inst)
and hpred_captured_ren ren (hpred : Sil.hpred) : Sil.hpred = match hpred with
| Hpointsto (base, se, te) ->
let base' = exp_captured_ren ren base in
let se' = strexp_captured_ren ren se in
let te' = exp_captured_ren ren te in
Hpointsto (base', se', te')
| Hlseg (k, para, e1, e2, elist) ->
let para' = hpara_ren para in
let e1' = exp_captured_ren ren e1 in
let e2' = exp_captured_ren ren e2 in
let elist' = IList.map (exp_captured_ren ren) elist in
Hlseg (k, para', e1', e2', elist')
| Hdllseg (k, para, e1, e2, e3, e4, elist) ->
let para' = hpara_dll_ren para in
let e1' = exp_captured_ren ren e1 in
let e2' = exp_captured_ren ren e2 in
let e3' = exp_captured_ren ren e3 in
let e4' = exp_captured_ren ren e4 in
let elist' = IList.map (exp_captured_ren ren) elist in
Hdllseg (k, para', e1', e2', e3', e4', elist')
and hpara_ren (para : Sil.hpara) : Sil.hpara =
let av = Sil.hpara_shallow_av para in
let ren = compute_renaming av in
let root = ident_captured_ren ren para.root in
let next = ident_captured_ren ren para.next in
let svars = IList.map (ident_captured_ren ren) para.svars in
let evars = IList.map (ident_captured_ren ren) para.evars in
let body = IList.map (hpred_captured_ren ren) para.body in
{ root; next; svars; evars; body}
and hpara_dll_ren (para : Sil.hpara_dll) : Sil.hpara_dll =
let av = Sil.hpara_dll_shallow_av para in
let ren = compute_renaming av in
let iF = ident_captured_ren ren para.cell in
let oF = ident_captured_ren ren para.flink in
let oB = ident_captured_ren ren para.blink in
let svars' = IList.map (ident_captured_ren ren) para.svars_dll in
let evars' = IList.map (ident_captured_ren ren) para.evars_dll in
let body' = IList.map (hpred_captured_ren ren) para.body_dll in
{ cell = iF;
flink = oF;
blink = oB;
svars_dll = svars';
evars_dll = evars';
body_dll = body'}
let pi_captured_ren ren pi =
IList.map (atom_captured_ren ren) pi
let sigma_captured_ren ren sigma =
IList.map (hpred_captured_ren ren) sigma
let sub_captured_ren ren sub =
Sil.sub_map (ident_captured_ren ren) (exp_captured_ren ren) sub
(** Canonicalize the names of primed variables and footprint vars. *)
let prop_rename_primed_footprint_vars (p : normal t) : normal t =
let p = prop_rename_array_indices p in
let bound_vars =
let filter id = Ident.is_footprint id || Ident.is_primed id in
let p_dfs = prop_dfs_sort p in
let fvars_in_p = prop_fav p_dfs in
Sil.fav_filter_ident fvars_in_p filter;
fvars_in_p in
let ren = compute_renaming bound_vars in
let sub' = sub_captured_ren ren p.sub in
let pi' = pi_captured_ren ren p.pi in
let sigma' = sigma_captured_ren ren p.sigma in
let pi_fp' = pi_captured_ren ren p.pi_fp in
let sigma_fp' = sigma_captured_ren ren p.sigma_fp in
let sub_for_normalize = Sil.sub_empty in
(* It is fine to use the empty substituion during normalization
because the renaming maintains that a substitution is normalized *)
let nsub' = Normalize.sub_normalize sub' in
let nsigma' = Normalize.sigma_normalize sub_for_normalize sigma' in
let npi' = Normalize.pi_normalize sub_for_normalize nsigma' pi' in
let p' = Normalize.footprint_normalize
(set prop_emp ~sub:nsub' ~pi:npi' ~sigma:nsigma' ~pi_fp:pi_fp' ~sigma_fp:sigma_fp') in
unsafe_cast_to_normal p'
let expose (p : normal t) : exposed t = Obj.magic p
(** Apply subsitution to prop. *)
let prop_sub subst (prop: 'a t) : exposed t =
let pi = pi_sub subst (prop.pi @ pi_of_subst prop.sub) in
let sigma = sigma_sub subst prop.sigma in
let pi_fp = pi_sub subst prop.pi_fp in
let sigma_fp = sigma_sub subst prop.sigma_fp in
set prop_emp ~pi ~sigma ~pi_fp ~sigma_fp
(** Apply renaming substitution to a proposition. *)
let prop_ren_sub (ren_sub: Sil.subst) (prop: normal t) : normal t =
Normalize.normalize (prop_sub ren_sub prop)
(** Existentially quantify the [fav] in [prop].
[fav] should not contain any primed variables. *)
let exist_quantify fav (prop : normal t) : normal t =
let ids = Sil.fav_to_list fav in
if IList.exists Ident.is_primed ids then assert false; (* sanity check *)
if ids == [] then prop else
let gen_fresh_id_sub id = (id, Exp.Var (Ident.create_fresh Ident.kprimed)) in
let ren_sub = Sil.sub_of_list (IList.map gen_fresh_id_sub ids) in
let prop' =
(* throw away x=E if x becomes _x *)
let mem_idlist i = IList.exists (fun id -> Ident.equal i id) in
let sub = Sil.sub_filter (fun i -> not (mem_idlist i ids)) prop.sub in
if Sil.sub_equal sub prop.sub then prop
else unsafe_cast_to_normal (set prop ~sub) in
(*
L.out "@[<2>.... Existential Quantification ....\n";
L.out "SUB:%a\n" pp_sub prop'.sub;
L.out "PI:%a\n" pp_pi prop'.pi;
L.out "PROP:%a\n@." pp_prop prop';
*)
prop_ren_sub ren_sub prop'
(** Apply the substitution [fe] to all the expressions in the prop. *)
let prop_expmap (fe: Exp.t -> Exp.t) prop =
let f (e, sil_opt) = (fe e, sil_opt) in
let pi = IList.map (Sil.atom_expmap fe) prop.pi in
let sigma = IList.map (Sil.hpred_expmap f) prop.sigma in
let pi_fp = IList.map (Sil.atom_expmap fe) prop.pi_fp in
let sigma_fp = IList.map (Sil.hpred_expmap f) prop.sigma_fp in
set prop ~pi ~sigma ~pi_fp ~sigma_fp
(** convert identifiers in fav to kind [k] *)
let vars_make_unprimed fav prop =
let ids = Sil.fav_to_list fav in
let ren_sub =
Sil.sub_of_list (IList.map
(fun i -> (i, Exp.Var (Ident.create_fresh Ident.knormal)))
ids) in
prop_ren_sub ren_sub prop
(** convert the normal vars to primed vars. *)
let prop_normal_vars_to_primed_vars p =
let fav = prop_fav p in
Sil.fav_filter_ident fav Ident.is_normal;
exist_quantify fav p
(** convert the primed vars to normal vars. *)
let prop_primed_vars_to_normal_vars (p : normal t) : normal t =
let fav = prop_fav p in
Sil.fav_filter_ident fav Ident.is_primed;
vars_make_unprimed fav p
let from_pi pi =
set prop_emp ~pi
let from_sigma sigma =
set prop_emp ~sigma
(** Rename free variables in a prop replacing them with existentially quantified vars *)
let prop_rename_fav_with_existentials (p : normal t) : normal t =
let fav = Sil.fav_new () in
prop_fav_add fav p;
let ids = Sil.fav_to_list fav in
let ids' = IList.map (fun i -> (i, Ident.create_fresh Ident.kprimed)) ids in
let ren_sub = Sil.sub_of_list (IList.map (fun (i, i') -> (i, Exp.Var i')) ids') in
let p' = prop_sub ren_sub p in
(*L.d_strln "Prop after renaming:"; d_prop p'; L.d_strln "";*)
Normalize.normalize p'
(** {2 Prop iterators} *)
(** Iterator state over sigma. *)
type 'a prop_iter =
{ pit_sub : Sil.subst; (** substitution for equalities *)
pit_pi : pi; (** pure part *)
pit_newpi : (bool * Sil.atom) list; (** newly added atoms. *)
(* The first records !Config.footprint. *)
pit_old : sigma; (** sigma already visited *)
pit_curr : Sil.hpred; (** current element *)
pit_state : 'a; (** state of current element *)
pit_new : sigma; (** sigma not yet visited *)
pit_pi_fp : pi; (** pure part of the footprint *)
pit_sigma_fp : sigma; (** sigma part of the footprint *)
}
let prop_iter_create prop =
match prop.sigma with
| hpred:: sigma' -> Some
{ pit_sub = prop.sub;
pit_pi = prop.pi;
pit_newpi = [];
pit_old = [];
pit_curr = hpred;
pit_state = ();
pit_new = sigma';
pit_pi_fp = prop.pi_fp;
pit_sigma_fp = prop.sigma_fp }
| _ -> None
(** Return the prop associated to the iterator. *)
let prop_iter_to_prop iter =
let sigma = IList.rev_append iter.pit_old (iter.pit_curr:: iter.pit_new) in
let prop =
Normalize.normalize
(set prop_emp
~sub:iter.pit_sub
~pi:iter.pit_pi
~sigma:sigma
~pi_fp:iter.pit_pi_fp
~sigma_fp:iter.pit_sigma_fp) in
IList.fold_left
(fun p (footprint, atom) -> Normalize.prop_atom_and ~footprint: footprint p atom)
prop iter.pit_newpi
(** Add an atom to the pi part of prop iter. The
first parameter records whether it is done
during footprint or during re - execution. *)
let prop_iter_add_atom footprint iter atom =
{ iter with pit_newpi = (footprint, atom):: iter.pit_newpi }
(** Remove the current element of the iterator, and return the prop
associated to the resulting iterator *)
let prop_iter_remove_curr_then_to_prop iter : normal t =
let sigma = IList.rev_append iter.pit_old iter.pit_new in
let normalized_sigma = Normalize.sigma_normalize iter.pit_sub sigma in
let prop =
set prop_emp
~sub:iter.pit_sub
~pi:iter.pit_pi
~sigma:normalized_sigma
~pi_fp:iter.pit_pi_fp
~sigma_fp:iter.pit_sigma_fp in
unsafe_cast_to_normal prop
(** Return the current hpred and state. *)
let prop_iter_current iter =
let curr = Normalize.hpred_normalize iter.pit_sub iter.pit_curr in
let prop =
unsafe_cast_to_normal
(set prop_emp ~sigma:[curr]) in
let prop' =
IList.fold_left
(fun p (footprint, atom) -> Normalize.prop_atom_and ~footprint: footprint p atom)
prop iter.pit_newpi in
match prop'.sigma with
| [curr'] -> (curr', iter.pit_state)
| _ -> assert false
(** Update the current element of the iterator. *)
let prop_iter_update_current iter hpred =
{ iter with pit_curr = hpred }
(** Update the current element of the iterator by a nonempty list of elements. *)
let prop_iter_update_current_by_list iter = function
| [] -> assert false (* the list should be nonempty *)
| hpred:: hpred_list ->
let pit_new' = hpred_list@iter.pit_new in
{ iter with pit_curr = hpred; pit_state = (); pit_new = pit_new'}
let prop_iter_next iter =
match iter.pit_new with
| [] -> None
| hpred':: new' -> Some
{ iter with
pit_old = iter.pit_curr:: iter.pit_old;
pit_curr = hpred';
pit_state = ();
pit_new = new'}
let prop_iter_remove_curr_then_next iter =
match iter.pit_new with
| [] -> None
| hpred':: new' -> Some
{ iter with
pit_old = iter.pit_old;
pit_curr = hpred';
pit_state = ();
pit_new = new'}
(** Insert before the current element of the iterator. *)
let prop_iter_prev_then_insert iter hpred =
{ iter with
pit_new = iter.pit_curr:: iter.pit_new;
pit_curr = hpred }
(** Scan sigma to find an [hpred] satisfying the filter function. *)
let rec prop_iter_find iter filter =
match filter iter.pit_curr with
| Some st -> Some { iter with pit_state = st }
| None ->
(match prop_iter_next iter with
| None -> None
| Some iter' -> prop_iter_find iter' filter)
(** Set the state of the iterator *)
let prop_iter_set_state iter state =
{ iter with pit_state = state }
let prop_iter_make_id_primed id iter =
let pid = Ident.create_fresh Ident.kprimed in
let sub_id = Sil.sub_of_list [(id, Exp.Var pid)] in
let normalize (id, e) =
let eq' : Sil.atom = Aeq (Sil.exp_sub sub_id (Var id), Sil.exp_sub sub_id e) in
Normalize.atom_normalize Sil.sub_empty eq' in
let rec split pairs_unpid pairs_pid = function
| [] -> (IList.rev pairs_unpid, IList.rev pairs_pid)
| (eq:: eqs_cur : pi) ->
begin
match eq with
| Aeq (Var id1, e1) when Sil.ident_in_exp id1 e1 ->
L.out "@[<2>#### ERROR: an assumption of the analyzer broken ####@\n";
L.out "Broken Assumption: id notin e for all (id,e) in sub@\n";
L.out "(id,e) : (%a,%a)@\n" (Ident.pp pe_text) id1 (Sil.pp_exp pe_text) e1;
L.out "PROP : %a@\n@." (pp_prop pe_text) (prop_iter_to_prop iter);
assert false
| Aeq (Var id1, e1) when Ident.equal pid id1 ->
split pairs_unpid ((id1, e1):: pairs_pid) eqs_cur
| Aeq (Var id1, e1) ->
split ((id1, e1):: pairs_unpid) pairs_pid eqs_cur
| _ ->
assert false
end in
let rec get_eqs acc = function
| [] | [_] ->
IList.rev acc
| (_, e1) :: (((_, e2) :: _) as pairs) ->
get_eqs (Sil.Aeq(e1, e2):: acc) pairs in
let sub_new, sub_use, eqs_add =
let eqs = IList.map normalize (Sil.sub_to_list iter.pit_sub) in
let pairs_unpid, pairs_pid = split [] [] eqs in
match pairs_pid with
| [] ->
let sub_unpid = Sil.sub_of_list pairs_unpid in
let pairs = (id, Exp.Var pid) :: pairs_unpid in
sub_unpid, Sil.sub_of_list pairs, []
| (id1, e1):: _ ->
let sub_id1 = Sil.sub_of_list [(id1, e1)] in
let pairs_unpid' =
IList.map (fun (id', e') -> (id', Sil.exp_sub sub_id1 e')) pairs_unpid in
let sub_unpid = Sil.sub_of_list pairs_unpid' in
let pairs = (id, e1) :: pairs_unpid' in
sub_unpid, Sil.sub_of_list pairs, get_eqs [] pairs_pid in
let nsub_new = Normalize.sub_normalize sub_new in
{ iter with
pit_sub = nsub_new;
pit_pi = pi_sub sub_use (iter.pit_pi @ eqs_add);
pit_old = sigma_sub sub_use iter.pit_old;
pit_curr = Sil.hpred_sub sub_use iter.pit_curr;
pit_new = sigma_sub sub_use iter.pit_new }
let prop_iter_footprint_fav_add fav iter =
sigma_fav_add fav iter.pit_sigma_fp;
pi_fav_add fav iter.pit_pi_fp
(** Find fav of the footprint part of the iterator *)
let prop_iter_footprint_fav iter =
Sil.fav_imperative_to_functional prop_iter_footprint_fav_add iter
let prop_iter_fav_add fav iter =
Sil.sub_fav_add fav iter.pit_sub;
pi_fav_add fav iter.pit_pi;
pi_fav_add fav (IList.map snd iter.pit_newpi);
sigma_fav_add fav iter.pit_old;
sigma_fav_add fav iter.pit_new;
Sil.hpred_fav_add fav iter.pit_curr;
prop_iter_footprint_fav_add fav iter
(** Find fav of the iterator *)
let prop_iter_fav iter =
Sil.fav_imperative_to_functional prop_iter_fav_add iter
(** Free vars of the iterator except the current hpred (and footprint). *)
let prop_iter_noncurr_fav_add fav iter =
sigma_fav_add fav iter.pit_old;
sigma_fav_add fav iter.pit_new;
Sil.sub_fav_add fav iter.pit_sub;
pi_fav_add fav iter.pit_pi
(** Extract the sigma part of the footprint *)
let prop_iter_get_footprint_sigma iter =
iter.pit_sigma_fp
(** Replace the sigma part of the footprint *)
let prop_iter_replace_footprint_sigma iter sigma =
{ iter with pit_sigma_fp = sigma }
let prop_iter_noncurr_fav iter =
Sil.fav_imperative_to_functional prop_iter_noncurr_fav_add iter
let rec strexp_gc_fields (fav: Sil.fav) (se : Sil.strexp) =
match se with
| Eexp _ ->
Some se
| Estruct (fsel, inst) ->
let fselo = IList.map (fun (f, se) -> (f, strexp_gc_fields fav se)) fsel in
let fsel' =
let fselo' = IList.filter (function | (_, Some _) -> true | _ -> false) fselo in
IList.map (function (f, seo) -> (f, unSome seo)) fselo' in
if Sil.fld_strexp_list_compare fsel fsel' = 0 then Some se
else Some (Sil.Estruct (fsel', inst))
| Earray _ ->
Some se
let hpred_gc_fields (fav: Sil.fav) (hpred : Sil.hpred) : Sil.hpred = match hpred with
| Hpointsto (e, se, te) ->
Sil.exp_fav_add fav e;
Sil.exp_fav_add fav te;
(match strexp_gc_fields fav se with
| None -> hpred
| Some se' ->
if Sil.strexp_compare se se' = 0 then hpred
else Hpointsto (e, se', te))
| Hlseg _ | Hdllseg _ ->
hpred
let rec prop_iter_map f iter =
let hpred_curr = f iter in
let iter' = { iter with pit_curr = hpred_curr } in
match prop_iter_next iter' with
| None -> iter'
| Some iter'' -> prop_iter_map f iter''
(** Collect garbage fields. *)
let prop_iter_gc_fields iter =
let f iter' =
let fav = prop_iter_noncurr_fav iter' in
hpred_gc_fields fav iter'.pit_curr in
prop_iter_map f iter
let prop_case_split prop =
let pi_sigma_list = Sil.sigma_to_sigma_ne prop.sigma in
let f props_acc (pi, sigma) =
let sigma' = sigma_normalize_prop prop sigma in
let prop' =
unsafe_cast_to_normal
(set prop ~sigma:sigma') in
(IList.fold_left Normalize.prop_atom_and prop' pi):: props_acc in
IList.fold_left f [] pi_sigma_list
let prop_expand prop =
(*
let _ = check_prop_normalized prop in
*)
prop_case_split prop
(*** START of module Metrics ***)
module Metrics : sig
val prop_size : 'a t -> int
val prop_chain_size : 'a t -> int
end = struct
let ptsto_weight = 1
and lseg_weight = 3
and pi_weight = 1
let rec hpara_size hpara = sigma_size hpara.Sil.body
and hpara_dll_size hpara_dll = sigma_size hpara_dll.Sil.body_dll
and hpred_size (hpred : Sil.hpred) = match hpred with
| Hpointsto _ ->
ptsto_weight
| Hlseg (_, hpara, _, _, _) ->
lseg_weight * hpara_size hpara
| Hdllseg (_, hpara_dll, _, _, _, _, _) ->
lseg_weight * hpara_dll_size hpara_dll
and sigma_size sigma =
let size = ref 0 in
IList.iter (fun hpred -> size := hpred_size hpred + !size) sigma; !size
let pi_size pi = pi_weight * IList.length pi
(** Compute a size value for the prop, which indicates its
complexity *)
let prop_size p =
let size_current = sigma_size p.sigma in
let size_footprint = sigma_size p.sigma_fp in
max size_current size_footprint
(** Approximate the size of the longest chain by counting the max
number of |-> with the same type and whose lhs is primed or
footprint *)
let prop_chain_size p =
let fp_size = pi_size p.pi_fp + sigma_size p.sigma_fp in
pi_size p.pi + sigma_size p.sigma + fp_size
end
(*** END of module Metrics ***)
module CategorizePreconditions = struct
type pre_category =
(* no preconditions *)
| NoPres
(* the preconditions impose no restrictions *)
| Empty
(* the preconditions only demand that some pointers are allocated *)
| OnlyAllocation
(* the preconditions impose constraints on the values of variables and/or memory *)
| DataConstraints
(** categorize a list of preconditions *)
let categorize preconditions =
let lhs_is_lvar : Exp.t -> bool = function
| Lvar _ -> true
| _ -> false in
let lhs_is_var_lvar : Exp.t -> bool = function
| Var _ -> true
| Lvar _ -> true
| _ -> false in
let rhs_is_var : Sil.strexp -> bool = function
| Eexp (Var _, _) -> true
| _ -> false in
let rec rhs_only_vars : Sil.strexp -> bool = function
| Eexp (Var _, _) ->
true
| Estruct (fsel, _) ->
IList.for_all (fun (_, se) -> rhs_only_vars se) fsel
| Earray _ ->
true
| _ ->
false in
let hpred_is_var : Sil.hpred -> bool = function (* stack variable with no constraints *)
| Hpointsto (e, se, _) ->
lhs_is_lvar e && rhs_is_var se
| _ ->
false in
let hpred_only_allocation : Sil.hpred -> bool = function (* only constraint is allocation *)
| Hpointsto (e, se, _) ->
lhs_is_var_lvar e && rhs_only_vars se
| _ ->
false in
let check_pre hpred_filter pre =
let check_pi pi =
pi = [] in
let check_sigma sigma =
IList.for_all hpred_filter sigma in
check_pi pre.pi && check_sigma pre.sigma in
let pres_no_constraints = IList.filter (check_pre hpred_is_var) preconditions in
let pres_only_allocation = IList.filter (check_pre hpred_only_allocation) preconditions in
match preconditions, pres_no_constraints, pres_only_allocation with
| [], _, _ ->
NoPres
| _:: _, _:: _, _ ->
Empty
| _:: _, [], _:: _ ->
OnlyAllocation
| _:: _, [], [] ->
DataConstraints
end
(* Export for interface *)
let exp_normalize_noabs = Normalize.exp_normalize_noabs
let mk_inequality = Normalize.mk_inequality
let mk_ptsto_exp = Normalize.mk_ptsto_exp
let mk_ptsto = Normalize.mk_ptsto
let normalize = Normalize.normalize
let prop_atom_and = Normalize.prop_atom_and