You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
781 lines
35 KiB
781 lines
35 KiB
(*
|
|
* Copyright (c) 2009 - 2013 Monoidics ltd.
|
|
* Copyright (c) 2013 - present Facebook, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under the BSD style license found in the
|
|
* LICENSE file in the root directory of this source tree. An additional grant
|
|
* of patent rights can be found in the PATENTS file in the same directory.
|
|
*)
|
|
|
|
(** Functions for "Smart" Pattern Matching *)
|
|
|
|
module L = Logging
|
|
module F = Format
|
|
open Utils
|
|
|
|
let mem_idlist i l =
|
|
list_exists (Ident.equal i) l
|
|
|
|
(** Type for a hpred pattern. flag=false means that the implication
|
|
between hpreds is not considered, and flag = true means that it is
|
|
considered during pattern matching *)
|
|
type hpred_pat = { hpred : Sil.hpred; flag : bool }
|
|
|
|
let pp_hpat pe f hpat =
|
|
F.fprintf f "%a" (Sil.pp_hpred pe) hpat.hpred
|
|
|
|
let rec pp_hpat_list pe f = function
|
|
| [] -> ()
|
|
| [hpat] ->
|
|
F.fprintf f "%a" (pp_hpat pe) hpat
|
|
| hpat:: hpats ->
|
|
F.fprintf f "%a * %a" (pp_hpat pe) hpat (pp_hpat_list pe) hpats
|
|
|
|
(** Checks e1 = e2[sub ++ sub'] for some sub' with dom(sub') subseteq vars.
|
|
Returns (sub ++ sub', vars - dom(sub')). *)
|
|
let rec exp_match e1 sub vars e2 : (Sil.subst * Ident.t list) option =
|
|
let check_equal sub vars e1 e2 =
|
|
let e2_inst = Sil.exp_sub sub e2
|
|
in if (Sil.exp_equal e1 e2_inst) then Some(sub, vars) else None in
|
|
match e1, e2 with
|
|
| _, Sil.Var id2 when (Ident.is_primed id2 && mem_idlist id2 vars) ->
|
|
let vars_new = list_filter (fun id -> not (Ident.equal id id2)) vars in
|
|
let sub_new = match (Sil.extend_sub sub id2 e1) with
|
|
| None -> assert false (* happens when vars contains the same variable twice. *)
|
|
| Some sub_new -> sub_new
|
|
in Some (sub_new, vars_new)
|
|
| _, Sil.Var _ ->
|
|
check_equal sub vars e1 e2
|
|
| Sil.Var _, _ ->
|
|
None
|
|
| Sil.Const _, _ | _, Sil.Const _ ->
|
|
check_equal sub vars e1 e2
|
|
| Sil.Sizeof _, _ | _, Sil.Sizeof _ ->
|
|
check_equal sub vars e1 e2
|
|
| Sil.Cast (t1, e1'), Sil.Cast (t2, e2') -> (* we are currently ignoring cast *)
|
|
exp_match e1' sub vars e2'
|
|
| Sil.Cast _, _ | _, Sil.Cast _ ->
|
|
None
|
|
| Sil.UnOp(o1, e1', _), Sil.UnOp(o2, e2', _) when Sil.unop_equal o1 o2 ->
|
|
exp_match e1' sub vars e2'
|
|
| Sil.UnOp _, _ | _, Sil.UnOp _ ->
|
|
None (* Naive *)
|
|
| Sil.BinOp(b1, e1', e1''), Sil.BinOp(b2, e2', e2'') when Sil.binop_equal b1 b2 ->
|
|
(match exp_match e1' sub vars e2' with
|
|
| None -> None
|
|
| Some (sub', vars') -> exp_match e1'' sub' vars' e2'')
|
|
| Sil.BinOp _, _ | _, Sil.BinOp _ ->
|
|
None (* Naive *)
|
|
| Sil.Lvar _, _ | _, Sil.Lvar _ ->
|
|
check_equal sub vars e1 e2
|
|
| Sil.Lfield(e1', fld1, t1), Sil.Lfield(e2', fld2, t2) when (Sil.fld_equal fld1 fld2) ->
|
|
exp_match e1' sub vars e2'
|
|
| Sil.Lfield _, _ | _, Sil.Lfield _ ->
|
|
None
|
|
| Sil.Lindex(base1, idx1), Sil.Lindex(base2, idx2) ->
|
|
(match exp_match base1 sub vars base2 with
|
|
| None -> None
|
|
| Some (sub', vars') -> exp_match idx1 sub' vars' idx2)
|
|
|
|
let exp_list_match es1 sub vars es2 =
|
|
let f res_acc (e1, e2) = match res_acc with
|
|
| None -> None
|
|
| Some (sub_acc, vars_leftover) -> exp_match e1 sub_acc vars_leftover e2 in
|
|
let es_combined = try list_combine es1 es2 with Invalid_argument _ -> assert false in
|
|
let es_match_res = list_fold_left f (Some (sub, vars)) es_combined
|
|
in es_match_res
|
|
|
|
(** Checks sexp1 = sexp2[sub ++ sub'] for some sub' with
|
|
dom(sub') subseteq vars. Returns (sub ++ sub', vars - dom(sub')).
|
|
WARNING: This function does not consider the fact that the analyzer
|
|
sometimes forgets fields of hpred. It can possibly cause a problem. *)
|
|
let rec strexp_match sexp1 sub vars sexp2 : (Sil.subst * Ident.t list) option =
|
|
match sexp1, sexp2 with
|
|
| Sil.Eexp (exp1, inst1), Sil.Eexp (exp2, inst2) ->
|
|
exp_match exp1 sub vars exp2
|
|
| Sil.Eexp _, _ | _, Sil.Eexp _ ->
|
|
None
|
|
| Sil.Estruct (fsel1, _), Sil.Estruct (fsel2, _) ->
|
|
fsel_match fsel1 sub vars fsel2
|
|
| Sil.Estruct _, _ | _, Sil.Estruct _ ->
|
|
None
|
|
| Sil.Earray (size1, isel1, _), Sil.Earray (size2, isel2, _) ->
|
|
(match exp_match size1 sub vars size2 with
|
|
| Some (sub', vars') -> isel_match isel1 sub' vars' isel2
|
|
| None -> None)
|
|
|
|
|
|
(** Checks fsel1 = fsel2[sub ++ sub'] for some sub' with
|
|
dom(sub') subseteq vars. Returns (sub ++ sub', vars - dom(sub')). *)
|
|
and fsel_match fsel1 sub vars fsel2 =
|
|
match fsel1, fsel2 with
|
|
| [], [] -> Some (sub, vars)
|
|
| [], _ -> None
|
|
| _, [] ->
|
|
if (!Config.abs_struct <= 0) then None
|
|
else Some (sub, vars) (* This can lead to great information loss *)
|
|
| (fld1, se1') :: fsel1', (fld2, se2') :: fsel2' ->
|
|
let n = Sil.fld_compare fld1 fld2 in
|
|
if (n = 0) then begin
|
|
match strexp_match se1' sub vars se2' with
|
|
| None -> None
|
|
| Some (sub', vars') -> fsel_match fsel1' sub' vars' fsel2'
|
|
end
|
|
else if (n < 0 && !Config.abs_struct > 0) then
|
|
fsel_match fsel1' sub vars fsel2
|
|
(* This can lead to great information loss *)
|
|
else None
|
|
|
|
(** Checks isel1 = isel2[sub ++ sub'] for some sub' with
|
|
dom(sub') subseteq vars. Returns (sub ++ sub', vars - dom(sub')). *)
|
|
and isel_match isel1 sub vars isel2 =
|
|
match isel1, isel2 with
|
|
| [], [] -> Some (sub, vars)
|
|
| [], _ | _, [] -> None
|
|
| (idx1, se1') :: isel1', (idx2, se2') :: isel2' ->
|
|
let idx2 = Sil.exp_sub sub idx2 in
|
|
let sanity_check = not (list_exists (fun id -> Sil.ident_in_exp id idx2) vars) in
|
|
if (not sanity_check) then begin
|
|
let pe = pe_text in
|
|
L.out "@[.... Sanity Check Failure while Matching Index-Strexps ....@.";
|
|
L.out "@[<4> IDX1: %a, STREXP1: %a@." (Sil.pp_exp pe) idx1 (Sil.pp_sexp pe) se1';
|
|
L.out "@[<4> IDX2: %a, STREXP2: %a@\n@." (Sil.pp_exp pe) idx2 (Sil.pp_sexp pe) se2';
|
|
assert false
|
|
end
|
|
else if Sil.exp_equal idx1 idx2 then begin
|
|
match strexp_match se1' sub vars se2' with
|
|
| None -> None
|
|
| Some (sub', vars') -> isel_match isel1' sub' vars' isel2'
|
|
end
|
|
else None
|
|
|
|
|
|
(* extends substitution sub by creating a new substitution for vars *)
|
|
let sub_extend_with_ren (sub: Sil.subst) vars =
|
|
(*
|
|
let check_precondition () =
|
|
let dom = Sil.sub_domain sub in
|
|
let overlap = list_exists (fun id -> list_exists (Ident.equal id) dom) vars in
|
|
if overlap then assert false in
|
|
check_precondition ();
|
|
*)
|
|
let f id = (id, Sil.Var (Ident.create_fresh Ident.kprimed)) in
|
|
let renaming_for_vars = Sil.sub_of_list (list_map f vars) in
|
|
Sil.sub_join sub renaming_for_vars
|
|
|
|
type sidecondition = Prop.normal Prop.t -> Sil.subst -> bool
|
|
|
|
let rec execute_with_backtracking = function
|
|
| [] -> None
|
|
| [f] -> f ()
|
|
| f:: fs ->
|
|
let res_f = f ()
|
|
in match res_f with
|
|
| None -> execute_with_backtracking fs
|
|
| Some _ -> res_f
|
|
|
|
let rec instantiate_to_emp p condition sub vars = function
|
|
| [] -> if condition p sub then Some(sub, p) else None
|
|
| hpat:: hpats ->
|
|
if not hpat.flag then None
|
|
else match hpat.hpred with
|
|
| Sil.Hpointsto _ | Sil.Hlseg (Sil.Lseg_NE, _, _, _, _) | Sil.Hdllseg (Sil.Lseg_NE, _, _, _, _, _, _) -> None
|
|
| Sil.Hlseg (k, _, e1, e2, _) ->
|
|
let fully_instantiated = not (list_exists (fun id -> Sil.ident_in_exp id e1) vars)
|
|
in if (not fully_instantiated) then None else
|
|
let e1' = Sil.exp_sub sub e1
|
|
in begin
|
|
match exp_match e1' sub vars e2 with
|
|
| None -> None
|
|
| Some (sub_new, vars_leftover) ->
|
|
instantiate_to_emp p condition sub_new vars_leftover hpats
|
|
end
|
|
| Sil.Hdllseg (k, _, iF, oB, oF, iB, _) ->
|
|
let fully_instantiated =
|
|
not (list_exists (fun id -> Sil.ident_in_exp id iF || Sil.ident_in_exp id oB) vars)
|
|
in if (not fully_instantiated) then None else
|
|
let iF' = Sil.exp_sub sub iF in
|
|
let oB' = Sil.exp_sub sub oB
|
|
in match exp_list_match [iF'; oB'] sub vars [oF; iB] with
|
|
| None -> None
|
|
| Some (sub_new, vars_leftover) ->
|
|
instantiate_to_emp p condition sub_new vars_leftover hpats
|
|
|
|
(* This function has to be changed in order to
|
|
* implement the idea "All lsegs outside are NE, and all lsegs inside
|
|
* are PE" *)
|
|
let rec iter_match_with_impl iter condition sub vars hpat hpats =
|
|
|
|
(*
|
|
L.out "@[.... iter_match_with_impl ....@.";
|
|
L.out "@[<4> sub: %a@\n@." pp_sub sub;
|
|
L.out "@[<4> PROP: %a@\n@." pp_prop (Prop.prop_iter_to_prop iter);
|
|
L.out "@[<4> hpred: %a@\n@." pp_hpat hpat;
|
|
L.out "@[<4> hpred_rest: %a@\n@." pp_hpat_list hpats;
|
|
*)
|
|
|
|
let do_next iter_cur _ = match Prop.prop_iter_next iter_cur with
|
|
| None -> None
|
|
| Some iter_next -> iter_match_with_impl iter_next condition sub vars hpat hpats
|
|
in
|
|
let do_empty_hpats iter_cur _ =
|
|
let (sub_new, vars_leftover) = match Prop.prop_iter_current iter_cur with
|
|
| _, (sub_new, vars_leftover) -> (sub_new, vars_leftover) in
|
|
let sub_res = sub_extend_with_ren sub_new vars_leftover in
|
|
let p_leftover = Prop.prop_iter_remove_curr_then_to_prop iter_cur in
|
|
(*
|
|
L.out "@[.... iter_match_with_impl (final condtion check) ....@\n@.";
|
|
L.out "@[<4> sub_res : %a@\n@." pp_sub sub_res;
|
|
L.out "@[<4> p_leftover : %a@\n@." pp_prop p_leftover;
|
|
*)
|
|
if condition p_leftover sub_res then Some (sub_res, p_leftover) else None
|
|
in
|
|
let do_nonempty_hpats iter_cur _ =
|
|
let (sub_new, vars_leftover) = match Prop.prop_iter_current iter_cur with
|
|
| _, (sub_new, vars_leftover) -> (sub_new, vars_leftover) in
|
|
let (hpat_next, hpats_rest) = match hpats with
|
|
| [] -> assert false
|
|
| hpat_next :: hpats_rest -> (hpat_next, hpats_rest) in
|
|
let p_rest = Prop.prop_iter_remove_curr_then_to_prop iter_cur
|
|
in prop_match_with_impl_sub p_rest condition sub_new vars_leftover hpat_next hpats_rest
|
|
in
|
|
let gen_filter_pointsto lexp2 strexp2 te2 = function
|
|
| Sil.Hpointsto (lexp1, strexp1, te1) when Sil.exp_equal te1 te2 ->
|
|
(match (exp_match lexp1 sub vars lexp2) with
|
|
| None -> None
|
|
| Some (sub', vars_leftover) -> strexp_match strexp1 sub' vars_leftover strexp2)
|
|
| _ -> None
|
|
in
|
|
let gen_filter_lseg k2 para2 e_start2 e_end2 es_shared2 = function
|
|
| Sil.Hpointsto _ -> None
|
|
| Sil.Hlseg (k1, para1, e_start1, e_end1, es_shared1) ->
|
|
let do_kinds_match = match k1, k2 with
|
|
| Sil.Lseg_NE, Sil.Lseg_NE | Sil.Lseg_NE, Sil.Lseg_PE | Sil.Lseg_PE, Sil.Lseg_PE -> true
|
|
| Sil.Lseg_PE, Sil.Lseg_NE -> false in
|
|
(* let do_paras_match = hpara_match_with_impl hpat.flag para1 para2 *)
|
|
let do_paras_match = hpara_match_with_impl true para1 para2
|
|
in if not (do_kinds_match && do_paras_match) then None
|
|
else
|
|
let es1 = [e_start1; e_end1]@es_shared1 in
|
|
let es2 = [e_start2; e_end2]@es_shared2
|
|
in exp_list_match es1 sub vars es2
|
|
| Sil.Hdllseg _ -> None
|
|
in
|
|
let gen_filter_dllseg k2 para2 iF2 oB2 oF2 iB2 es_shared2 = function
|
|
| Sil.Hpointsto _ | Sil.Hlseg _ -> None
|
|
| Sil.Hdllseg (k1, para1, iF1, oB1, oF1, iB1, es_shared1) ->
|
|
let do_kinds_match = match k1, k2 with
|
|
| Sil.Lseg_NE, Sil.Lseg_NE | Sil.Lseg_NE, Sil.Lseg_PE | Sil.Lseg_PE, Sil.Lseg_PE -> true
|
|
| Sil.Lseg_PE, Sil.Lseg_NE -> false in
|
|
(* let do_paras_match = hpara_dll_match_with_impl hpat.flag para1 para2 *)
|
|
let do_paras_match = hpara_dll_match_with_impl true para1 para2
|
|
in if not (do_kinds_match && do_paras_match) then None
|
|
else
|
|
let es1 = [iF1; oB1; oF1; iB1]@es_shared1 in
|
|
let es2 = [iF2; oB2; oF2; iB2]@es_shared2
|
|
in exp_list_match es1 sub vars es2
|
|
|
|
in match hpat.hpred with
|
|
| Sil.Hpointsto (lexp2, strexp2, te2) ->
|
|
let filter = gen_filter_pointsto lexp2 strexp2 te2
|
|
in begin match (Prop.prop_iter_find iter filter), hpats with
|
|
| (None, _) -> None
|
|
| (Some iter_cur, []) ->
|
|
do_empty_hpats iter_cur ()
|
|
| (Some iter_cur, _) ->
|
|
execute_with_backtracking [do_nonempty_hpats iter_cur; do_next iter_cur]
|
|
end
|
|
| Sil.Hlseg (k2, para2, e_start2, e_end2, es_shared2) ->
|
|
let filter = gen_filter_lseg k2 para2 e_start2 e_end2 es_shared2 in
|
|
let do_emp_lseg _ =
|
|
let fully_instantiated_start2 = not (list_exists (fun id -> Sil.ident_in_exp id e_start2) vars) in
|
|
if (not fully_instantiated_start2) then None
|
|
else
|
|
let e_start2' = Sil.exp_sub sub e_start2 in
|
|
match (exp_match e_start2' sub vars e_end2, hpats) with
|
|
| None, _ ->
|
|
(*
|
|
L.out "@.... iter_match_with_impl (empty_case, fail) ....@\n@.";
|
|
L.out "@[<4> sub: %a@\n@." pp_sub sub;
|
|
L.out "@[<4> e_start2': %a@\n@." pp_exp e_start2';
|
|
L.out "@[<4> e_end2: %a@\n@." pp_exp e_end2;
|
|
*)
|
|
None
|
|
| Some (sub_new, vars_leftover), [] ->
|
|
let sub_res = sub_extend_with_ren sub_new vars_leftover in
|
|
let p_leftover = Prop.prop_iter_to_prop iter in
|
|
if condition p_leftover sub_res then Some(sub_res, p_leftover) else None
|
|
| Some (sub_new, vars_leftover), hpat_next:: hpats_rest ->
|
|
let p = Prop.prop_iter_to_prop iter in
|
|
prop_match_with_impl_sub p condition sub_new vars_leftover hpat_next hpats_rest in
|
|
let do_para_lseg _ =
|
|
let (para2_exist_vars, para2_inst) = Sil.hpara_instantiate para2 e_start2 e_end2 es_shared2 in
|
|
(* let allow_impl hpred = {hpred=hpred; flag=hpat.flag} in *)
|
|
let allow_impl hpred = { hpred = hpred; flag = true } in
|
|
let (para2_hpat, para2_hpats) = match list_map allow_impl para2_inst with
|
|
| [] -> assert false (* the body of a parameter should contain at least one * conjunct *)
|
|
| para2_pat :: para2_pats -> (para2_pat, para2_pats) in
|
|
let new_vars = para2_exist_vars @ vars in
|
|
let new_hpats = para2_hpats @ hpats
|
|
in match (iter_match_with_impl iter condition sub new_vars para2_hpat new_hpats) with
|
|
| None -> None
|
|
| Some (sub_res, p_leftover) when condition p_leftover sub_res ->
|
|
let not_in_para2_exist_vars id =
|
|
not (list_exists (fun id' -> Ident.equal id id') para2_exist_vars) in
|
|
let sub_res' = Sil.sub_filter not_in_para2_exist_vars sub_res
|
|
in Some (sub_res', p_leftover)
|
|
| Some _ -> None
|
|
in begin match ((Prop.prop_iter_find iter filter), hpats) with
|
|
| (None, _) when not hpat.flag ->
|
|
(* L.out "@[.... iter_match_with_impl (lseg not-matched) ....@\n@."; *)
|
|
None
|
|
| (None, _) when Sil.lseg_kind_equal k2 Sil.Lseg_NE ->
|
|
(* L.out "@[.... iter_match_with_impl (lseg not-matched) ....@\n@."; *)
|
|
do_para_lseg ()
|
|
| (None, _) ->
|
|
(* L.out "@[.... iter_match_with_impl (lseg not-matched) ....@\n@."; *)
|
|
execute_with_backtracking [do_emp_lseg; do_para_lseg]
|
|
| (Some iter_cur, []) ->
|
|
(* L.out "@[.... iter_match_with_impl (lseg matched) ....@\n@."; *)
|
|
do_empty_hpats iter_cur ()
|
|
| (Some iter_cur, _) ->
|
|
(* L.out "@[.... iter_match_with_impl (lseg matched) ....@\n@."; *)
|
|
execute_with_backtracking [do_nonempty_hpats iter_cur; do_next iter_cur]
|
|
end
|
|
| Sil.Hdllseg (k2, para2, iF2, oB2, oF2, iB2, es_shared2) ->
|
|
let filter = gen_filter_dllseg k2 para2 iF2 oB2 oF2 iB2 es_shared2 in
|
|
let do_emp_dllseg _ =
|
|
let fully_instantiated_iFoB2 =
|
|
not (list_exists (fun id -> Sil.ident_in_exp id iF2 || Sil.ident_in_exp id oB2) vars)
|
|
in if (not fully_instantiated_iFoB2) then None else
|
|
let iF2' = Sil.exp_sub sub iF2 in
|
|
let oB2' = Sil.exp_sub sub oB2
|
|
in match (exp_list_match [iF2'; oB2'] sub vars [oF2; iB2], hpats) with
|
|
| None, _ -> None
|
|
| Some (sub_new, vars_leftover), [] ->
|
|
let sub_res = sub_extend_with_ren sub_new vars_leftover in
|
|
let p_leftover = Prop.prop_iter_to_prop iter
|
|
in if condition p_leftover sub_res then Some(sub_res, p_leftover) else None
|
|
| Some (sub_new, vars_leftover), hpat_next:: hpats_rest ->
|
|
let p = Prop.prop_iter_to_prop iter
|
|
in prop_match_with_impl_sub p condition sub_new vars_leftover hpat_next hpats_rest in
|
|
let do_para_dllseg _ =
|
|
let fully_instantiated_iF2 = not (list_exists (fun id -> Sil.ident_in_exp id iF2) vars)
|
|
in if (not fully_instantiated_iF2) then None else
|
|
let iF2' = Sil.exp_sub sub iF2
|
|
in match exp_match iF2' sub vars iB2 with
|
|
| None -> None
|
|
| Some (sub_new, vars_leftover) ->
|
|
let (para2_exist_vars, para2_inst) = Sil.hpara_dll_instantiate para2 iF2 oB2 oF2 es_shared2 in
|
|
(* let allow_impl hpred = {hpred=hpred; flag=hpat.flag} in *)
|
|
let allow_impl hpred = { hpred = hpred; flag = true } in
|
|
let (para2_hpat, para2_hpats) = match list_map allow_impl para2_inst with
|
|
| [] -> assert false (* the body of a parameter should contain at least one * conjunct *)
|
|
| para2_pat :: para2_pats -> (para2_pat, para2_pats) in
|
|
let new_vars = para2_exist_vars @ vars_leftover in
|
|
let new_hpats = para2_hpats @ hpats
|
|
in match (iter_match_with_impl iter condition sub_new new_vars para2_hpat new_hpats) with
|
|
| None -> None
|
|
| Some (sub_res, p_leftover) when condition p_leftover sub_res ->
|
|
let not_in_para2_exist_vars id =
|
|
not (list_exists (fun id' -> Ident.equal id id') para2_exist_vars) in
|
|
let sub_res' = Sil.sub_filter not_in_para2_exist_vars sub_res
|
|
in Some (sub_res', p_leftover)
|
|
| Some _ -> None
|
|
in begin match ((Prop.prop_iter_find iter filter), hpats) with
|
|
| (None, _) when not hpat.flag -> None
|
|
| (None, _) when Sil.lseg_kind_equal k2 Sil.Lseg_NE -> do_para_dllseg ()
|
|
| (None, _) -> execute_with_backtracking [do_emp_dllseg; do_para_dllseg]
|
|
| (Some iter_cur, []) -> do_empty_hpats iter_cur ()
|
|
| (Some iter_cur, _) -> execute_with_backtracking [do_nonempty_hpats iter_cur; do_next iter_cur]
|
|
end
|
|
|
|
and prop_match_with_impl_sub p condition sub vars hpat hpats =
|
|
(*
|
|
L.out "@[.... prop_match_with_impl_sub ....@.";
|
|
L.out "@[<4> sub: %a@\n@." pp_sub sub;
|
|
L.out "@[<4> PROP: %a@\n@." pp_prop p;
|
|
L.out "@[<4> hpat: %a@\n@." pp_hpat hpat;
|
|
L.out "@[<4> hpred_rest: %a@\n@." pp_hpat_list hpats;
|
|
*)
|
|
match Prop.prop_iter_create p with
|
|
| None ->
|
|
instantiate_to_emp p condition sub vars (hpat:: hpats)
|
|
| Some iter ->
|
|
iter_match_with_impl iter condition sub vars hpat hpats
|
|
|
|
and hpara_common_match_with_impl impl_ok ids1 sigma1 eids2 ids2 sigma2 =
|
|
try
|
|
let sub_ids =
|
|
let ren_ids = list_combine ids2 ids1 in
|
|
let f (id2, id1) = (id2, Sil.Var id1) in
|
|
list_map f ren_ids in
|
|
let (sub_eids, eids_fresh) =
|
|
let f id = (id, Ident.create_fresh Ident.kprimed) in
|
|
let ren_eids = list_map f eids2 in
|
|
let eids_fresh = list_map snd ren_eids in
|
|
let sub_eids = list_map (fun (id2, id1) -> (id2, Sil.Var id1)) ren_eids in
|
|
(sub_eids, eids_fresh) in
|
|
let sub = Sil.sub_of_list (sub_ids @ sub_eids) in
|
|
match sigma2 with
|
|
| [] -> if sigma1 == [] then true else false
|
|
| hpred2 :: sigma2 ->
|
|
let (hpat2, hpats2) =
|
|
let (hpred2_ren, sigma2_ren) = (Sil.hpred_sub sub hpred2, Prop.sigma_sub sub sigma2) in
|
|
let allow_impl hpred = { hpred = hpred; flag = impl_ok } in
|
|
(allow_impl hpred2_ren, list_map allow_impl sigma2_ren) in
|
|
let condition _ _ = true in
|
|
let p1 = Prop.normalize (Prop.from_sigma sigma1) in
|
|
begin
|
|
match (prop_match_with_impl_sub p1 condition Sil.sub_empty eids_fresh hpat2 hpats2) with
|
|
| None -> false
|
|
| Some (_, p1') when Prop.prop_is_emp p1' -> true
|
|
| _ -> false
|
|
end
|
|
with
|
|
| Invalid_argument _ -> false
|
|
|
|
and hpara_match_with_impl impl_ok para1 para2 : bool =
|
|
(*
|
|
L.out "@[.... hpara_match_with_impl_sub ....@.";
|
|
L.out "@[<4> HPARA1: %a@\n@." pp_hpara para1;
|
|
L.out "@[<4> HPARA2: %a@\n@." pp_hpara para2;
|
|
*)
|
|
let ids1 = para1.Sil.root :: para1.Sil.next :: para1.Sil.svars in
|
|
let ids2 = para2.Sil.root :: para2.Sil.next :: para2.Sil.svars in
|
|
let eids2 = para2.Sil.evars
|
|
in hpara_common_match_with_impl impl_ok ids1 para1.Sil.body eids2 ids2 para2.Sil.body
|
|
|
|
and hpara_dll_match_with_impl impl_ok para1 para2 : bool =
|
|
(*
|
|
L.out "@[.... hpara_dll_match_with_impl_sub ....@.";
|
|
L.out "@[<4> HPARA1: %a@\n@." pp_hpara_dll para1;
|
|
L.out "@[<4> HPARA2: %a@\n@." pp_hpara_dll para2;
|
|
*)
|
|
let ids1 = para1.Sil.cell :: para1.Sil.blink :: para1.Sil.flink :: para1.Sil.svars_dll in
|
|
let ids2 = para2.Sil.cell :: para2.Sil.blink :: para2.Sil.flink :: para2.Sil.svars_dll in
|
|
let eids2 = para2.Sil.evars_dll in
|
|
hpara_common_match_with_impl impl_ok ids1 para1.Sil.body_dll eids2 ids2 para2.Sil.body_dll
|
|
|
|
|
|
(** [prop_match_with_impl p condition vars hpat hpats]
|
|
returns [(subst, p_leftover)] such that
|
|
1) [dom(subst) = vars]
|
|
2) [p |- (hpat.hpred * hpats.hpred)[subst] * p_leftover].
|
|
Using the flag [field], we can control the strength of |-. *)
|
|
let prop_match_with_impl p condition vars hpat hpats =
|
|
prop_match_with_impl_sub p condition Sil.sub_empty vars hpat hpats
|
|
|
|
let sigma_remove_hpred eq sigma e =
|
|
let filter = function
|
|
| Sil.Hpointsto (root, _, _)
|
|
| Sil.Hlseg (_, _, root, _, _)
|
|
| Sil.Hdllseg (_, _, root, _, _, _, _) -> eq root e in
|
|
let sigma_e, sigma_no_e = list_partition filter sigma in
|
|
match sigma_e with
|
|
| [] -> (None, sigma)
|
|
| [hpred_e] -> (Some hpred_e, sigma_no_e)
|
|
| _ -> assert false
|
|
|
|
(** {2 Routines used when finding disjoint isomorphic sigmas from a single sigma} *)
|
|
|
|
type iso_mode = Exact | LFieldForget | RFieldForget
|
|
|
|
|
|
let rec generate_todos_from_strexp mode todos sexp1 sexp2 =
|
|
match sexp1, sexp2 with
|
|
| Sil.Eexp (exp1, inst1), Sil.Eexp (exp2, inst2) ->
|
|
let new_todos = (exp1, exp2) :: todos in
|
|
Some new_todos
|
|
| Sil.Eexp _, _ ->
|
|
None
|
|
| Sil.Estruct (fel1, _), Sil.Estruct (fel2, _) -> (* assume sorted w.r.t. fields *)
|
|
if (list_length fel1 <> list_length fel2) && mode == Exact
|
|
then None
|
|
else generate_todos_from_fel mode todos fel1 fel2
|
|
| Sil.Estruct _, _ ->
|
|
None
|
|
| Sil.Earray (size1, iel1, _), Sil.Earray (size2, iel2, _) ->
|
|
if (not (Sil.exp_equal size1 size2) || list_length iel1 <> list_length iel2)
|
|
then None
|
|
else generate_todos_from_iel mode todos iel1 iel2
|
|
| Sil.Earray _, _ ->
|
|
None
|
|
|
|
and generate_todos_from_fel mode todos fel1 fel2 =
|
|
match fel1, fel2 with
|
|
| [], [] ->
|
|
Some todos
|
|
| [], _ ->
|
|
if mode == RFieldForget then Some todos else None
|
|
| _, [] ->
|
|
if mode == LFieldForget then Some todos else None
|
|
| (fld1, strexp1) :: fel1', (fld2, strexp2) :: fel2' ->
|
|
let n = Sil.fld_compare fld1 fld2 in
|
|
if (n = 0) then
|
|
begin
|
|
match generate_todos_from_strexp mode todos strexp1 strexp2 with
|
|
| None -> None
|
|
| Some todos' -> generate_todos_from_fel mode todos' fel1' fel2'
|
|
end
|
|
else if (n < 0 && mode == LFieldForget) then
|
|
generate_todos_from_fel mode todos fel1' fel2
|
|
else if (n > 0 && mode == RFieldForget) then
|
|
generate_todos_from_fel mode todos fel1 fel2'
|
|
else
|
|
None
|
|
|
|
and generate_todos_from_iel mode todos iel1 iel2 =
|
|
match iel1, iel2 with
|
|
| [],[] ->
|
|
Some todos
|
|
| (idx1, strexp1) :: iel1', (idx2, strexp2) :: iel2' ->
|
|
begin
|
|
match generate_todos_from_strexp mode todos strexp1 strexp2 with
|
|
| None -> None
|
|
| Some todos' ->
|
|
let new_todos = (idx1, idx2) :: todos' in
|
|
generate_todos_from_iel mode new_todos iel1' iel2'
|
|
end
|
|
| _ ->
|
|
None
|
|
|
|
(** add (e1,e2) at the front of corres, if necessary. *)
|
|
let corres_extend_front e1 e2 corres =
|
|
let filter (e1', e2') = (Sil.exp_equal e1 e1') || (Sil.exp_equal e2 e2') in
|
|
let checker e1' e2' = (Sil.exp_equal e1 e1') && (Sil.exp_equal e2 e2')
|
|
in match (list_filter filter corres) with
|
|
| [] -> Some ((e1, e2) :: corres)
|
|
| [(e1', e2')] when checker e1' e2' -> Some corres
|
|
| _ -> None
|
|
|
|
let corres_extensible corres e1 e2 =
|
|
let predicate (e1', e2') = (Sil.exp_equal e1 e1') || (Sil.exp_equal e2 e2')
|
|
in not (list_exists predicate corres) && not (Sil.exp_equal e1 e2)
|
|
|
|
let corres_related corres e1 e2 =
|
|
let filter (e1', e2') = (Sil.exp_equal e1 e1') || (Sil.exp_equal e2 e2') in
|
|
let checker e1' e2' = (Sil.exp_equal e1 e1') && (Sil.exp_equal e2 e2') in
|
|
match (list_filter filter corres) with
|
|
| [] -> Sil.exp_equal e1 e2
|
|
| [(e1', e2')] when checker e1' e2' -> true
|
|
| _ -> false
|
|
|
|
(* TO DO. Perhaps OK. Need to implemenet a better isomorphism check later.*)
|
|
let hpara_iso para1 para2 =
|
|
hpara_match_with_impl false para1 para2 && hpara_match_with_impl false para2 para1
|
|
|
|
let hpara_dll_iso para1 para2 =
|
|
hpara_dll_match_with_impl false para1 para2 && hpara_dll_match_with_impl false para2 para1
|
|
|
|
|
|
(** [generic_find_partial_iso] finds isomorphic subsigmas of [sigma_todo].
|
|
The function [update] is used to get rid of hpred pairs from [sigma_todo].
|
|
[sigma_corres] records the isormophic copies discovered so far. The first
|
|
parameter determines how much flexibility we will allow during this partial
|
|
isomorphism finding. *)
|
|
let rec generic_find_partial_iso mode update corres sigma_corres todos sigma_todo =
|
|
match todos with
|
|
| [] ->
|
|
let sigma1, sigma2 = sigma_corres in
|
|
Some (list_rev corres, list_rev sigma1, list_rev sigma2, sigma_todo)
|
|
| (e1, e2) :: todos' when corres_related corres e1 e2 ->
|
|
begin
|
|
match corres_extend_front e1 e2 corres with
|
|
| None -> assert false
|
|
| Some new_corres -> generic_find_partial_iso mode update new_corres sigma_corres todos' sigma_todo
|
|
end
|
|
| (e1, e2) :: todos' when corres_extensible corres e1 e2 ->
|
|
let hpredo1, hpredo2, new_sigma_todo = update e1 e2 sigma_todo in
|
|
begin
|
|
match hpredo1, hpredo2 with
|
|
| None, None ->
|
|
begin
|
|
match corres_extend_front e1 e2 corres with
|
|
| None -> assert false
|
|
| Some new_corres -> generic_find_partial_iso mode update new_corres sigma_corres todos' sigma_todo
|
|
end
|
|
| None, _ | _, None ->
|
|
None
|
|
| Some (Sil.Hpointsto (_, _, te1)), Some (Sil.Hpointsto (_, _, te2))
|
|
when not (Sil.exp_equal te1 te2) ->
|
|
None
|
|
| Some (Sil.Hpointsto (_, se1, _) as hpred1),
|
|
Some (Sil.Hpointsto (_, se2, _) as hpred2) ->
|
|
begin
|
|
match generate_todos_from_strexp mode [] se1 se2 with
|
|
| None -> None
|
|
| Some todos'' ->
|
|
let new_corres = match corres_extend_front e1 e2 corres with
|
|
| None -> assert false
|
|
| Some new_corres -> new_corres in
|
|
let new_sigma_corres =
|
|
let sigma1, sigma2 = sigma_corres in
|
|
let new_sigma1 = hpred1 :: sigma1 in
|
|
let new_sigma2 = hpred2 :: sigma2 in
|
|
(new_sigma1, new_sigma2) in
|
|
let new_todos = todos'' @ todos' in
|
|
generic_find_partial_iso mode update new_corres new_sigma_corres new_todos new_sigma_todo
|
|
|
|
end
|
|
| Some (Sil.Hlseg (k1, para1, root1, next1, shared1) as hpred1),
|
|
Some (Sil.Hlseg (k2, para2, root2, next2, shared2) as hpred2) ->
|
|
if k1 <> k2 || not (hpara_iso para1 para2) then None
|
|
else
|
|
(try
|
|
let new_corres = match corres_extend_front e1 e2 corres with
|
|
| None -> assert false
|
|
| Some new_corres -> new_corres in
|
|
let new_sigma_corres =
|
|
let sigma1, sigma2 = sigma_corres in
|
|
let new_sigma1 = hpred1 :: sigma1 in
|
|
let new_sigma2 = hpred2 :: sigma2 in
|
|
(new_sigma1, new_sigma2) in
|
|
let new_todos =
|
|
let shared12 = list_combine shared1 shared2 in
|
|
(root1, root2) :: (next1, next2) :: shared12 @ todos' in
|
|
generic_find_partial_iso mode update new_corres new_sigma_corres new_todos new_sigma_todo
|
|
with Invalid_argument _ -> None)
|
|
| Some (Sil.Hdllseg(k1, para1, iF1, oB1, oF1, iB1, shared1) as hpred1),
|
|
Some (Sil.Hdllseg(k2, para2, iF2, oB2, oF2, iB2, shared2) as hpred2) ->
|
|
if k1 <> k2 || not (hpara_dll_iso para1 para2) then None
|
|
else
|
|
(try
|
|
let new_corres = match corres_extend_front e1 e2 corres with
|
|
| None -> assert false
|
|
| Some new_corres -> new_corres in
|
|
let new_sigma_corres =
|
|
let sigma1, sigma2 = sigma_corres in
|
|
let new_sigma1 = hpred1 :: sigma1 in
|
|
let new_sigma2 = hpred2 :: sigma2 in
|
|
(new_sigma1, new_sigma2) in
|
|
let new_todos =
|
|
let shared12 = list_combine shared1 shared2 in
|
|
(iF1, iF2):: (oB1, oB2):: (oF1, oF2):: (iB1, iB2):: shared12@todos' in
|
|
generic_find_partial_iso mode update new_corres new_sigma_corres new_todos new_sigma_todo
|
|
with Invalid_argument _ -> None)
|
|
| _ -> None
|
|
end
|
|
| _ -> None
|
|
|
|
(** [find_partial_iso] finds disjoint isomorphic sub-sigmas inside a given sigma.
|
|
The function returns a partial iso and three sigmas. The first sigma is the first
|
|
copy of the two isomorphic sigmas, so it uses expressions in the domain of
|
|
the returned isomorphism. The second is the second copy of the two isomorphic sigmas,
|
|
and it uses expressions in the range of the isomorphism. The third is the unused
|
|
part of the input sigma. *)
|
|
let find_partial_iso eq corres todos sigma =
|
|
let update e1 e2 sigma0 =
|
|
let (hpredo1, sigma0_no_e1) = sigma_remove_hpred eq sigma0 e1 in
|
|
let (hpredo2, sigma0_no_e12) = sigma_remove_hpred eq sigma0_no_e1 e2 in
|
|
(hpredo1, hpredo2, sigma0_no_e12) in
|
|
let init_sigma_corres = ([], []) in
|
|
let init_sigma_todo = sigma in
|
|
generic_find_partial_iso Exact update corres init_sigma_corres todos init_sigma_todo
|
|
|
|
(** [find_partial_iso_from_two_sigmas] finds isomorphic sub-sigmas inside two
|
|
given sigmas. The function returns a partial iso and four sigmas. The first
|
|
sigma is the first copy of the two isomorphic sigmas, so it uses expressions in the domain of
|
|
the returned isomorphism. The second is the second copy of the two isomorphic sigmas,
|
|
and it uses expressions in the range of the isomorphism. The third and fourth
|
|
are the unused parts of the two input sigmas. *)
|
|
let find_partial_iso_from_two_sigmas mode eq corres todos sigma1 sigma2 =
|
|
let update e1 e2 sigma_todo =
|
|
let sigma_todo1, sigma_todo2 = sigma_todo in
|
|
let hpredo1, sigma_todo1_no_e1 = sigma_remove_hpred eq sigma_todo1 e1 in
|
|
let hpredo2, sigma_todo2_no_e2 = sigma_remove_hpred eq sigma_todo2 e2 in
|
|
let new_sigma_todo = sigma_todo1_no_e1, sigma_todo2_no_e2 in
|
|
(hpredo1, hpredo2, new_sigma_todo) in
|
|
let init_sigma_corres = ([], []) in
|
|
let init_sigma_todo = (sigma1, sigma2) in
|
|
generic_find_partial_iso mode update corres init_sigma_corres todos init_sigma_todo
|
|
|
|
(** Lift the kind of list segment predicates to PE *)
|
|
let hpred_lift_to_pe hpred =
|
|
match hpred with
|
|
| Sil.Hpointsto _ -> hpred
|
|
| Sil.Hlseg (_, para, root, next, shared) -> Sil.Hlseg (Sil.Lseg_PE, para, root, next, shared)
|
|
| Sil.Hdllseg(_, para, iF, oB, oF, iB, shared) -> Sil.Hdllseg (Sil.Lseg_PE, para, iF, oB, oF, iB, shared)
|
|
|
|
(** Lift the kind of list segment predicates to PE in a given sigma *)
|
|
let sigma_lift_to_pe sigma =
|
|
list_map hpred_lift_to_pe sigma
|
|
|
|
(** [generic_para_create] takes a correspondence, and a sigma
|
|
and a list of expressions for the first part of this
|
|
correspondence. Then, it creates a renaming of expressions
|
|
in the domain of the given correspondence, and applies this
|
|
renaming to the given sigma. The result is a tuple of the renaming,
|
|
the renamed sigma, ids for existentially quantified expressions,
|
|
ids for shared expressions, and shared expressions. *)
|
|
let generic_para_create corres sigma1 elist1 =
|
|
let corres_ids =
|
|
let not_same_consts = function
|
|
| Sil.Const c1, Sil.Const c2 -> not (Sil.const_equal c1 c2)
|
|
| _ -> true in
|
|
let new_corres' = list_filter not_same_consts corres in
|
|
let add_fresh_id pair = (pair, Ident.create_fresh Ident.kprimed) in
|
|
list_map add_fresh_id new_corres' in
|
|
let (es_shared, ids_shared, ids_exists) =
|
|
let not_in_elist1 ((e1, _), _) = not (list_exists (Sil.exp_equal e1) elist1) in
|
|
let corres_ids_no_elist1 = list_filter not_in_elist1 corres_ids in
|
|
let should_be_shared ((e1, e2), _) = Sil.exp_equal e1 e2 in
|
|
let shared, exists = list_partition should_be_shared corres_ids_no_elist1 in
|
|
let es_shared = list_map (fun ((e1, _), _) -> e1) shared in
|
|
(es_shared, list_map snd shared, list_map snd exists) in
|
|
let renaming = list_map (fun ((e1, _), id) -> (e1, id)) corres_ids in
|
|
let body =
|
|
let sigma1' = sigma_lift_to_pe sigma1 in
|
|
let renaming_exp = list_map (fun (e1, id) -> (e1, Sil.Var id)) renaming in
|
|
Prop.sigma_replace_exp renaming_exp sigma1' in
|
|
(renaming, body, ids_exists, ids_shared, es_shared)
|
|
|
|
(** [hpara_create] takes a correspondence, and a sigma, a root
|
|
and a next for the first part of this correspondence. Then, it creates a
|
|
hpara and discovers a list of shared expressions that are
|
|
passed as arguments to hpara. Both of them are returned as a result. *)
|
|
let hpara_create corres sigma1 root1 next1 =
|
|
let renaming, body, ids_exists, ids_shared, es_shared =
|
|
generic_para_create corres sigma1 [root1; next1] in
|
|
let get_id1 e1 =
|
|
try
|
|
let is_equal_to_e1 (e1', _) = Sil.exp_equal e1 e1' in
|
|
let _, id = list_find is_equal_to_e1 renaming in
|
|
id
|
|
with Not_found -> assert false in
|
|
let id_root = get_id1 root1 in
|
|
let id_next = get_id1 next1 in
|
|
let hpara =
|
|
{ Sil.root = id_root;
|
|
Sil.next = id_next;
|
|
Sil.svars = ids_shared;
|
|
Sil.evars = ids_exists;
|
|
Sil.body = body } in
|
|
(hpara, es_shared)
|
|
|
|
(** [hpara_dll_create] takes a correspondence, and a sigma, a root,
|
|
a blink and a flink for the first part of this correspondence. Then, it creates a
|
|
hpara_dll and discovers a list of shared expressions that are
|
|
passed as arguments to hpara. Both of them are returned as a result. *)
|
|
let hpara_dll_create corres sigma1 root1 blink1 flink1 =
|
|
let renaming, body, ids_exists, ids_shared, es_shared =
|
|
generic_para_create corres sigma1 [root1; blink1; flink1] in
|
|
let get_id1 e1 =
|
|
try
|
|
let is_equal_to_e1 (e1', _) = Sil.exp_equal e1 e1' in
|
|
let _, id = list_find is_equal_to_e1 renaming in
|
|
id
|
|
with Not_found -> assert false in
|
|
let id_root = get_id1 root1 in
|
|
let id_blink = get_id1 blink1 in
|
|
let id_flink = get_id1 flink1 in
|
|
let hpara_dll =
|
|
{ Sil.cell = id_root;
|
|
Sil.blink = id_blink;
|
|
Sil.flink = id_flink;
|
|
Sil.svars_dll = ids_shared;
|
|
Sil.evars_dll = ids_exists;
|
|
Sil.body_dll = body } in
|
|
(hpara_dll, es_shared)
|