You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
715 lines
21 KiB
715 lines
21 KiB
(**************************************************************************)
|
|
(* *)
|
|
(* OCaml *)
|
|
(* *)
|
|
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
|
|
(* *)
|
|
(* Copyright 1996 Institut National de Recherche en Informatique et *)
|
|
(* en Automatique. *)
|
|
(* *)
|
|
(* All rights reserved. This file is distributed under the terms of *)
|
|
(* the GNU Lesser General Public License version 2.1, with the *)
|
|
(* special exception on linking described in the file LICENSE. *)
|
|
(* *)
|
|
(**************************************************************************)
|
|
|
|
(* Sets over ordered types *)
|
|
|
|
module type OrderedType =
|
|
sig
|
|
type t
|
|
val compare: t -> t -> int
|
|
end
|
|
|
|
module type S =
|
|
sig
|
|
type elt
|
|
type t
|
|
include Comparer.S with type t := t
|
|
|
|
val empty: t
|
|
val is_empty: t -> bool
|
|
val mem: elt -> t -> bool
|
|
val add: elt -> t -> t
|
|
val singleton: elt -> t
|
|
val remove: elt -> t -> t
|
|
val union: t -> t -> t
|
|
val inter: t -> t -> t
|
|
val disjoint: t -> t -> bool
|
|
val diff: t -> t -> t
|
|
val compare: t -> t -> int
|
|
|
|
module Provide_equal (_ : sig
|
|
type t = elt [@@deriving equal]
|
|
end) : sig
|
|
type t [@@deriving equal]
|
|
end
|
|
with type t := t
|
|
|
|
val subset: t -> t -> bool
|
|
val iter: (elt -> unit) -> t -> unit
|
|
val map: (elt -> elt) -> t -> t
|
|
val fold: (elt -> 'a -> 'a) -> t -> 'a -> 'a
|
|
val for_all: (elt -> bool) -> t -> bool
|
|
val exists: (elt -> bool) -> t -> bool
|
|
val filter: (elt -> bool) -> t -> t
|
|
val filter_map: (elt -> elt option) -> t -> t
|
|
val partition: (elt -> bool) -> t -> t * t
|
|
val cardinal: t -> int
|
|
val elements: t -> elt list
|
|
val only_elt: t -> elt option
|
|
val classify : t -> elt NS0.zero_one_many
|
|
val min_elt: t -> elt
|
|
val min_elt_opt: t -> elt option
|
|
val max_elt: t -> elt
|
|
val max_elt_opt: t -> elt option
|
|
val choose: t -> elt
|
|
val choose_opt: t -> elt option
|
|
val pop : t -> elt * t
|
|
val pop_opt : t -> (elt * t) option
|
|
val split: elt -> t -> t * bool * t
|
|
val find: elt -> t -> elt
|
|
val find_opt: elt -> t -> elt option
|
|
val find_first: (elt -> bool) -> t -> elt
|
|
val find_first_opt: (elt -> bool) -> t -> elt option
|
|
val find_last: (elt -> bool) -> t -> elt
|
|
val find_last_opt: (elt -> bool) -> t -> elt option
|
|
val of_list: elt list -> t
|
|
val to_seq_from : elt -> t -> elt Seq.t
|
|
val to_seq : t -> elt Seq.t
|
|
val add_seq : elt Seq.t -> t -> t
|
|
val of_seq : elt Seq.t -> t
|
|
|
|
module Provide_sexp_of (_ : sig
|
|
type t = elt [@@deriving sexp_of]
|
|
end) : sig
|
|
type t [@@deriving sexp_of]
|
|
end
|
|
with type t := t
|
|
|
|
module Provide_of_sexp (_ : sig
|
|
type t = elt [@@deriving of_sexp]
|
|
end) : sig
|
|
type t [@@deriving of_sexp]
|
|
end
|
|
with type t := t
|
|
end
|
|
|
|
module T = struct
|
|
type ('elt, 'cmp) t =
|
|
| Empty
|
|
| Node of {l: ('elt, 'cmp) t; v: 'elt; r: ('elt, 'cmp) t; h: int}
|
|
|
|
(* Sets are represented by balanced binary trees (the heights of the
|
|
children differ by at most 2 *)
|
|
|
|
type ('elt, 'cmp) enumeration =
|
|
| End
|
|
| More of 'elt * ('elt, 'cmp) t * ('elt, 'cmp) enumeration
|
|
|
|
let rec cons_enum s e =
|
|
match s with
|
|
Empty -> e
|
|
| Node{l; v; r} -> cons_enum l (More(v, r, e))
|
|
|
|
let compare compare_elt _ s1 s2 =
|
|
let rec compare_aux e1 e2 =
|
|
match (e1, e2) with
|
|
(End, End) -> 0
|
|
| (End, _) -> -1
|
|
| (_, End) -> 1
|
|
| (More(v1, r1, e1), More(v2, r2, e2)) ->
|
|
let c = compare_elt v1 v2 in
|
|
if c <> 0
|
|
then c
|
|
else compare_aux (cons_enum r1 e1) (cons_enum r2 e2)
|
|
in
|
|
compare_aux (cons_enum s1 End) (cons_enum s2 End)
|
|
|
|
type 'compare_elt compare [@@deriving compare, equal, sexp]
|
|
end
|
|
|
|
include T
|
|
|
|
let equal equal_elt _ s1 s2 =
|
|
let rec equal_aux e1 e2 =
|
|
match (e1, e2) with
|
|
(End, End) -> true
|
|
| (End, _) -> false
|
|
| (_, End) -> false
|
|
| (More(v1, r1, e1), More(v2, r2, e2)) ->
|
|
equal_elt v1 v2 &&
|
|
equal_aux (cons_enum r1 e1) (cons_enum r2 e2)
|
|
in
|
|
equal_aux (cons_enum s1 End) (cons_enum s2 End)
|
|
|
|
let rec elements_aux accu = function
|
|
Empty -> accu
|
|
| Node{l; v; r} -> elements_aux (v :: elements_aux accu r) l
|
|
|
|
let elements s =
|
|
elements_aux [] s
|
|
|
|
let sexp_of_t sexp_of_elt _ s =
|
|
elements s
|
|
|> Sexplib.Conv.sexp_of_list sexp_of_elt
|
|
|
|
let height = function
|
|
Empty -> 0
|
|
| Node {h} -> h
|
|
|
|
(* Creates a new node with left son l, value v and right son r.
|
|
We must have all elements of l < v < all elements of r.
|
|
l and r must be balanced and | height l - height r | <= 2.
|
|
Inline expansion of height for better speed. *)
|
|
|
|
let create l v r =
|
|
let hl = match l with Empty -> 0 | Node {h} -> h in
|
|
let hr = match r with Empty -> 0 | Node {h} -> h in
|
|
Node{l; v; r; h=(if hl >= hr then hl + 1 else hr + 1)}
|
|
|
|
let of_sorted_list l =
|
|
let rec sub n l =
|
|
match n, l with
|
|
| 0, l -> Empty, l
|
|
| 1, x0 :: l -> Node {l=Empty; v=x0; r=Empty; h=1}, l
|
|
| 2, x0 :: x1 :: l ->
|
|
Node{l=Node{l=Empty; v=x0; r=Empty; h=1}; v=x1; r=Empty; h=2}, l
|
|
| 3, x0 :: x1 :: x2 :: l ->
|
|
Node{l=Node{l=Empty; v=x0; r=Empty; h=1}; v=x1;
|
|
r=Node{l=Empty; v=x2; r=Empty; h=1}; h=2}, l
|
|
| n, l ->
|
|
let nl = n / 2 in
|
|
let left, l = sub nl l in
|
|
match l with
|
|
| [] -> assert false
|
|
| mid :: l ->
|
|
let right, l = sub (n - nl - 1) l in
|
|
create left mid right, l
|
|
in
|
|
fst (sub (List.length l) l)
|
|
|
|
let t_of_sexp elt_of_sexp _ s =
|
|
Sexplib.Conv.list_of_sexp elt_of_sexp s
|
|
|> of_sorted_list
|
|
|
|
module Make(Ord: Comparer.S) =
|
|
struct
|
|
module Ord = struct
|
|
include Ord
|
|
let compare = (comparer :> t -> t -> int)
|
|
end
|
|
|
|
type elt = Ord.t
|
|
|
|
include (Comparer.Apply (T) (Ord))
|
|
|
|
module Provide_equal (Elt : sig
|
|
type t = Ord.t [@@deriving equal]
|
|
end) = struct
|
|
let equal l r = equal Elt.equal Ord.equal_compare l r
|
|
end
|
|
|
|
module Provide_sexp_of (Elt : sig
|
|
type t = Ord.t [@@deriving sexp_of]
|
|
end) = struct
|
|
let sexp_of_t s =
|
|
sexp_of_t Elt.sexp_of_t Ord.sexp_of_compare s
|
|
end
|
|
|
|
module Provide_of_sexp (Elt : sig
|
|
type t = Ord.t [@@deriving of_sexp]
|
|
end) = struct
|
|
let t_of_sexp s =
|
|
t_of_sexp Elt.t_of_sexp Ord.compare_of_sexp s
|
|
end
|
|
|
|
(* Same as create, but performs one step of rebalancing if necessary.
|
|
Assumes l and r balanced and | height l - height r | <= 3.
|
|
Inline expansion of create for better speed in the most frequent case
|
|
where no rebalancing is required. *)
|
|
|
|
let bal l v r =
|
|
let hl = match l with Empty -> 0 | Node {h} -> h in
|
|
let hr = match r with Empty -> 0 | Node {h} -> h in
|
|
if hl > hr + 2 then begin
|
|
match l with
|
|
Empty -> invalid_arg "Set.bal"
|
|
| Node{l=ll; v=lv; r=lr} ->
|
|
if height ll >= height lr then
|
|
create ll lv (create lr v r)
|
|
else begin
|
|
match lr with
|
|
Empty -> invalid_arg "Set.bal"
|
|
| Node{l=lrl; v=lrv; r=lrr}->
|
|
create (create ll lv lrl) lrv (create lrr v r)
|
|
end
|
|
end else if hr > hl + 2 then begin
|
|
match r with
|
|
Empty -> invalid_arg "Set.bal"
|
|
| Node{l=rl; v=rv; r=rr} ->
|
|
if height rr >= height rl then
|
|
create (create l v rl) rv rr
|
|
else begin
|
|
match rl with
|
|
Empty -> invalid_arg "Set.bal"
|
|
| Node{l=rll; v=rlv; r=rlr} ->
|
|
create (create l v rll) rlv (create rlr rv rr)
|
|
end
|
|
end else
|
|
Node{l; v; r; h=(if hl >= hr then hl + 1 else hr + 1)}
|
|
|
|
(* Insertion of one element *)
|
|
|
|
let rec add x = function
|
|
Empty -> Node{l=Empty; v=x; r=Empty; h=1}
|
|
| Node{l; v; r} as t ->
|
|
let c = Ord.compare x v in
|
|
if c = 0 then t else
|
|
if c < 0 then
|
|
let ll = add x l in
|
|
if l == ll then t else bal ll v r
|
|
else
|
|
let rr = add x r in
|
|
if r == rr then t else bal l v rr
|
|
|
|
let singleton x = Node{l=Empty; v=x; r=Empty; h=1}
|
|
|
|
(* Beware: those two functions assume that the added v is *strictly*
|
|
smaller (or bigger) than all the present elements in the tree; it
|
|
does not test for equality with the current min (or max) element.
|
|
Indeed, they are only used during the "join" operation which
|
|
respects this precondition.
|
|
*)
|
|
|
|
let rec add_min_element x = function
|
|
| Empty -> singleton x
|
|
| Node {l; v; r} ->
|
|
bal (add_min_element x l) v r
|
|
|
|
let rec add_max_element x = function
|
|
| Empty -> singleton x
|
|
| Node {l; v; r} ->
|
|
bal l v (add_max_element x r)
|
|
|
|
(* Same as create and bal, but no assumptions are made on the
|
|
relative heights of l and r. *)
|
|
|
|
let rec join l v r =
|
|
match (l, r) with
|
|
(Empty, _) -> add_min_element v r
|
|
| (_, Empty) -> add_max_element v l
|
|
| (Node{l=ll; v=lv; r=lr; h=lh}, Node{l=rl; v=rv; r=rr; h=rh}) ->
|
|
if lh > rh + 2 then bal ll lv (join lr v r) else
|
|
if rh > lh + 2 then bal (join l v rl) rv rr else
|
|
create l v r
|
|
|
|
let classify x : _ NS0.zero_one_many =
|
|
match x with
|
|
| Empty -> Zero
|
|
| Node {l=Empty; v; r=Empty} -> One v
|
|
| _ -> Many
|
|
|
|
let only_elt = function
|
|
Node {l=Empty; v; r=Empty} -> Some v
|
|
| _ -> None
|
|
|
|
(* Smallest and greatest element of a set *)
|
|
|
|
let rec min_elt = function
|
|
Empty -> raise Not_found
|
|
| Node{l=Empty; v} -> v
|
|
| Node{l} -> min_elt l
|
|
|
|
let rec min_elt_opt = function
|
|
Empty -> None
|
|
| Node{l=Empty; v} -> Some v
|
|
| Node{l} -> min_elt_opt l
|
|
|
|
let rec max_elt = function
|
|
Empty -> raise Not_found
|
|
| Node{v; r=Empty} -> v
|
|
| Node{r} -> max_elt r
|
|
|
|
let rec max_elt_opt = function
|
|
Empty -> None
|
|
| Node{v; r=Empty} -> Some v
|
|
| Node{r} -> max_elt_opt r
|
|
|
|
(* Remove the smallest element of the given set *)
|
|
|
|
let rec remove_min_elt = function
|
|
Empty -> invalid_arg "Set.remove_min_elt"
|
|
| Node{l=Empty; r} -> r
|
|
| Node{l; v; r} -> bal (remove_min_elt l) v r
|
|
|
|
(* Merge two trees l and r into one.
|
|
All elements of l must precede the elements of r.
|
|
Assume | height l - height r | <= 2. *)
|
|
|
|
let merge t1 t2 =
|
|
match (t1, t2) with
|
|
(Empty, t) -> t
|
|
| (t, Empty) -> t
|
|
| (_, _) -> bal t1 (min_elt t2) (remove_min_elt t2)
|
|
|
|
(* Merge two trees l and r into one.
|
|
All elements of l must precede the elements of r.
|
|
No assumption on the heights of l and r. *)
|
|
|
|
let concat t1 t2 =
|
|
match (t1, t2) with
|
|
(Empty, t) -> t
|
|
| (t, Empty) -> t
|
|
| (_, _) -> join t1 (min_elt t2) (remove_min_elt t2)
|
|
|
|
(* Splitting. split x s returns a triple (l, present, r) where
|
|
- l is the set of elements of s that are < x
|
|
- r is the set of elements of s that are > x
|
|
- present is false if s contains no element equal to x,
|
|
or true if s contains an element equal to x. *)
|
|
|
|
let rec split x = function
|
|
Empty ->
|
|
(Empty, false, Empty)
|
|
| Node{l; v; r} ->
|
|
let c = Ord.compare x v in
|
|
if c = 0 then (l, true, r)
|
|
else if c < 0 then
|
|
let (ll, pres, rl) = split x l in (ll, pres, join rl v r)
|
|
else
|
|
let (lr, pres, rr) = split x r in (join l v lr, pres, rr)
|
|
|
|
(* Implementation of the set operations *)
|
|
|
|
let empty = Empty
|
|
|
|
let is_empty = function Empty -> true | _ -> false
|
|
|
|
let rec mem x = function
|
|
Empty -> false
|
|
| Node{l; v; r} ->
|
|
let c = Ord.compare x v in
|
|
c = 0 || mem x (if c < 0 then l else r)
|
|
|
|
let rec remove x = function
|
|
Empty -> Empty
|
|
| (Node{l; v; r} as t) ->
|
|
let c = Ord.compare x v in
|
|
if c = 0 then merge l r
|
|
else
|
|
if c < 0 then
|
|
let ll = remove x l in
|
|
if l == ll then t
|
|
else bal ll v r
|
|
else
|
|
let rr = remove x r in
|
|
if r == rr then t
|
|
else bal l v rr
|
|
|
|
let rec union s1 s2 =
|
|
match (s1, s2) with
|
|
(Empty, t2) -> t2
|
|
| (t1, Empty) -> t1
|
|
| (Node{l=l1; v=v1; r=r1; h=h1}, Node{l=l2; v=v2; r=r2; h=h2}) ->
|
|
if h1 >= h2 then
|
|
if h2 = 1 then add v2 s1 else begin
|
|
let (l2, _, r2) = split v1 s2 in
|
|
join (union l1 l2) v1 (union r1 r2)
|
|
end
|
|
else
|
|
if h1 = 1 then add v1 s2 else begin
|
|
let (l1, _, r1) = split v2 s1 in
|
|
join (union l1 l2) v2 (union r1 r2)
|
|
end
|
|
|
|
let rec inter s1 s2 =
|
|
match (s1, s2) with
|
|
(Empty, _) -> Empty
|
|
| (_, Empty) -> Empty
|
|
| (Node{l=l1; v=v1; r=r1}, t2) ->
|
|
match split v1 t2 with
|
|
(l2, false, r2) ->
|
|
concat (inter l1 l2) (inter r1 r2)
|
|
| (l2, true, r2) ->
|
|
join (inter l1 l2) v1 (inter r1 r2)
|
|
|
|
(* Same as split, but compute the left and right subtrees
|
|
only if the pivot element is not in the set. The right subtree
|
|
is computed on demand. *)
|
|
|
|
type split_bis =
|
|
| Found
|
|
| NotFound of t * (unit -> t)
|
|
|
|
let rec split_bis x = function
|
|
Empty ->
|
|
NotFound (Empty, (fun () -> Empty))
|
|
| Node{l; v; r; _} ->
|
|
let c = Ord.compare x v in
|
|
if c = 0 then Found
|
|
else if c < 0 then
|
|
match split_bis x l with
|
|
| Found -> Found
|
|
| NotFound (ll, rl) -> NotFound (ll, (fun () -> join (rl ()) v r))
|
|
else
|
|
match split_bis x r with
|
|
| Found -> Found
|
|
| NotFound (lr, rr) -> NotFound (join l v lr, rr)
|
|
|
|
let rec disjoint s1 s2 =
|
|
match (s1, s2) with
|
|
(Empty, _) | (_, Empty) -> true
|
|
| (Node{l=l1; v=v1; r=r1}, t2) ->
|
|
if s1 == s2 then false
|
|
else match split_bis v1 t2 with
|
|
NotFound(l2, r2) -> disjoint l1 l2 && disjoint r1 (r2 ())
|
|
| Found -> false
|
|
|
|
let rec diff s1 s2 =
|
|
match (s1, s2) with
|
|
(Empty, _) -> Empty
|
|
| (t1, Empty) -> t1
|
|
| (Node{l=l1; v=v1; r=r1}, t2) ->
|
|
match split v1 t2 with
|
|
(l2, false, r2) ->
|
|
join (diff l1 l2) v1 (diff r1 r2)
|
|
| (l2, true, r2) ->
|
|
concat (diff l1 l2) (diff r1 r2)
|
|
|
|
let rec subset s1 s2 =
|
|
match (s1, s2) with
|
|
Empty, _ ->
|
|
true
|
|
| _, Empty ->
|
|
false
|
|
| Node {l=l1; v=v1; r=r1}, (Node {l=l2; v=v2; r=r2} as t2) ->
|
|
let c = Ord.compare v1 v2 in
|
|
if c = 0 then
|
|
subset l1 l2 && subset r1 r2
|
|
else if c < 0 then
|
|
subset (Node {l=l1; v=v1; r=Empty; h=0}) l2 && subset r1 t2
|
|
else
|
|
subset (Node {l=Empty; v=v1; r=r1; h=0}) r2 && subset l1 t2
|
|
|
|
let rec iter f = function
|
|
Empty -> ()
|
|
| Node{l; v; r} -> iter f l; f v; iter f r
|
|
|
|
let rec fold f s accu =
|
|
match s with
|
|
Empty -> accu
|
|
| Node{l; v; r} -> fold f r (f v (fold f l accu))
|
|
|
|
let rec for_all p = function
|
|
Empty -> true
|
|
| Node{l; v; r} -> p v && for_all p l && for_all p r
|
|
|
|
let rec exists p = function
|
|
Empty -> false
|
|
| Node{l; v; r} -> p v || exists p l || exists p r
|
|
|
|
let rec filter p = function
|
|
Empty -> Empty
|
|
| (Node{l; v; r}) as t ->
|
|
(* call [p] in the expected left-to-right order *)
|
|
let l' = filter p l in
|
|
let pv = p v in
|
|
let r' = filter p r in
|
|
if pv then
|
|
if l==l' && r==r' then t else join l' v r'
|
|
else concat l' r'
|
|
|
|
let rec partition p = function
|
|
Empty -> (Empty, Empty)
|
|
| Node{l; v; r} ->
|
|
(* call [p] in the expected left-to-right order *)
|
|
let (lt, lf) = partition p l in
|
|
let pv = p v in
|
|
let (rt, rf) = partition p r in
|
|
if pv
|
|
then (join lt v rt, concat lf rf)
|
|
else (concat lt rt, join lf v rf)
|
|
|
|
let rec cardinal = function
|
|
Empty -> 0
|
|
| Node{l; r} -> cardinal l + 1 + cardinal r
|
|
|
|
let elements = elements
|
|
|
|
let choose = function
|
|
Empty -> raise Not_found
|
|
| Node{v} -> v
|
|
|
|
let choose_opt = function
|
|
Empty -> None
|
|
| Node{v} -> Some v
|
|
|
|
let pop = function
|
|
Empty -> raise Not_found
|
|
| Node{l; v; r} -> (v, merge l r)
|
|
|
|
let pop_opt = function
|
|
Empty -> None
|
|
| Node{l; v; r} -> Some (v, merge l r)
|
|
|
|
let rec find x = function
|
|
Empty -> raise Not_found
|
|
| Node{l; v; r} ->
|
|
let c = Ord.compare x v in
|
|
if c = 0 then v
|
|
else find x (if c < 0 then l else r)
|
|
|
|
let rec find_first_aux v0 f = function
|
|
Empty ->
|
|
v0
|
|
| Node{l; v; r} ->
|
|
if f v then
|
|
find_first_aux v f l
|
|
else
|
|
find_first_aux v0 f r
|
|
|
|
let rec find_first f = function
|
|
Empty ->
|
|
raise Not_found
|
|
| Node{l; v; r} ->
|
|
if f v then
|
|
find_first_aux v f l
|
|
else
|
|
find_first f r
|
|
|
|
let rec find_first_opt_aux v0 f = function
|
|
Empty ->
|
|
Some v0
|
|
| Node{l; v; r} ->
|
|
if f v then
|
|
find_first_opt_aux v f l
|
|
else
|
|
find_first_opt_aux v0 f r
|
|
|
|
let rec find_first_opt f = function
|
|
Empty ->
|
|
None
|
|
| Node{l; v; r} ->
|
|
if f v then
|
|
find_first_opt_aux v f l
|
|
else
|
|
find_first_opt f r
|
|
|
|
let rec find_last_aux v0 f = function
|
|
Empty ->
|
|
v0
|
|
| Node{l; v; r} ->
|
|
if f v then
|
|
find_last_aux v f r
|
|
else
|
|
find_last_aux v0 f l
|
|
|
|
let rec find_last f = function
|
|
Empty ->
|
|
raise Not_found
|
|
| Node{l; v; r} ->
|
|
if f v then
|
|
find_last_aux v f r
|
|
else
|
|
find_last f l
|
|
|
|
let rec find_last_opt_aux v0 f = function
|
|
Empty ->
|
|
Some v0
|
|
| Node{l; v; r} ->
|
|
if f v then
|
|
find_last_opt_aux v f r
|
|
else
|
|
find_last_opt_aux v0 f l
|
|
|
|
let rec find_last_opt f = function
|
|
Empty ->
|
|
None
|
|
| Node{l; v; r} ->
|
|
if f v then
|
|
find_last_opt_aux v f r
|
|
else
|
|
find_last_opt f l
|
|
|
|
let rec find_opt x = function
|
|
Empty -> None
|
|
| Node{l; v; r} ->
|
|
let c = Ord.compare x v in
|
|
if c = 0 then Some v
|
|
else find_opt x (if c < 0 then l else r)
|
|
|
|
let try_join l v r =
|
|
(* [join l v r] can only be called when (elements of l < v <
|
|
elements of r); use [try_join l v r] when this property may
|
|
not hold, but you hope it does hold in the common case *)
|
|
if (l = Empty || Ord.compare (max_elt l) v < 0)
|
|
&& (r = Empty || Ord.compare v (min_elt r) < 0)
|
|
then join l v r
|
|
else union l (add v r)
|
|
|
|
let rec map f = function
|
|
| Empty -> Empty
|
|
| Node{l; v; r} as t ->
|
|
(* enforce left-to-right evaluation order *)
|
|
let l' = map f l in
|
|
let v' = f v in
|
|
let r' = map f r in
|
|
if l == l' && v == v' && r == r' then t
|
|
else try_join l' v' r'
|
|
|
|
let try_concat t1 t2 =
|
|
match (t1, t2) with
|
|
(Empty, t) -> t
|
|
| (t, Empty) -> t
|
|
| (_, _) -> try_join t1 (min_elt t2) (remove_min_elt t2)
|
|
|
|
let rec filter_map f = function
|
|
| Empty -> Empty
|
|
| Node{l; v; r} as t ->
|
|
(* enforce left-to-right evaluation order *)
|
|
let l' = filter_map f l in
|
|
let v' = f v in
|
|
let r' = filter_map f r in
|
|
begin match v' with
|
|
| Some v' ->
|
|
if l == l' && v == v' && r == r' then t
|
|
else try_join l' v' r'
|
|
| None ->
|
|
try_concat l' r'
|
|
end
|
|
|
|
let of_list l =
|
|
match l with
|
|
| [] -> empty
|
|
| [x0] -> singleton x0
|
|
| [x0; x1] -> add x1 (singleton x0)
|
|
| [x0; x1; x2] -> add x2 (add x1 (singleton x0))
|
|
| [x0; x1; x2; x3] -> add x3 (add x2 (add x1 (singleton x0)))
|
|
| [x0; x1; x2; x3; x4] -> add x4 (add x3 (add x2 (add x1 (singleton x0))))
|
|
| _ -> of_sorted_list (List.sort_uniq ~cmp:Ord.compare l)
|
|
|
|
let add_seq i m =
|
|
Seq.fold_left (fun s x -> add x s) m i
|
|
|
|
let of_seq i = add_seq i empty
|
|
|
|
let rec seq_of_enum_ c () = match c with
|
|
| End -> Seq.Nil
|
|
| More (x, t, rest) -> Seq.Cons (x, seq_of_enum_ (cons_enum t rest))
|
|
|
|
let to_seq c = seq_of_enum_ (cons_enum c End)
|
|
|
|
let to_seq_from low s =
|
|
let rec aux low s c = match s with
|
|
| Empty -> c
|
|
| Node {l; r; v; _} ->
|
|
begin match Ord.compare v low with
|
|
| 0 -> More (v, r, c)
|
|
| n when n<0 -> aux low r c
|
|
| _ -> aux low l (More (v, r, c))
|
|
end
|
|
in
|
|
seq_of_enum_ (aux low s End)
|
|
end
|