You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
59 lines
2.0 KiB
59 lines
2.0 KiB
5 months ago
|
from tqdm import tqdm
|
||
|
import os
|
||
|
import sys
|
||
|
sys.path.append(os.getcwd())
|
||
|
from config import shixuns_data_path,shixuns_bert_em_path
|
||
|
import pandas as pd
|
||
|
import logging
|
||
|
from transformers import AutoTokenizer, TFAutoModel
|
||
|
from config import bert_base_chinese
|
||
|
from utils import finalcut
|
||
|
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
|
||
|
tqdm.pandas()
|
||
|
|
||
|
# 加载大规模预训练Bert模型
|
||
|
bert_model = bert_base_chinese
|
||
|
tokenizer = AutoTokenizer.from_pretrained(bert_model)
|
||
|
model = TFAutoModel.from_pretrained(bert_model,output_hidden_states=True) # 模型是否返回所有隐藏状态。
|
||
|
|
||
|
shixun = pd.read_csv(shixuns_data_path,sep='\t',encoding='utf-8')
|
||
|
|
||
|
shixun = shixun.drop(['updated_at', 'status', 'publish_time', 'modify_time',
|
||
|
'reset_time', 'trainee', 'myshixuns_count','disciplines_id',
|
||
|
'disciplines_name', 'subject_id','created_at_ts'], axis=1)
|
||
|
#添加bert_em列
|
||
|
for i in tqdm(range(768)):
|
||
|
bert_em = "bert_em" + str(i)
|
||
|
shixun[bert_em] = 0.
|
||
|
|
||
|
# 准备数据
|
||
|
shixun_name = shixun["shixun_name"]
|
||
|
language = shixun["language"]
|
||
|
subject_name = shixun["subject_name"]
|
||
|
|
||
|
shixun_name.fillna(value="",inplace=True)
|
||
|
language.fillna(value="",inplace=True)
|
||
|
subject_name.fillna(value="",inplace=True)
|
||
|
|
||
|
shixun_text = shixun_name + language + subject_name
|
||
|
|
||
|
words = []
|
||
|
for i in tqdm(range(len(shixun_text))):
|
||
|
words.append(finalcut((shixun_text[i])))#删除句子中无效字符
|
||
|
|
||
|
def getbert_vec(word_list):
|
||
|
inputs = tokenizer(word_list, return_tensors="tf", padding="max_length", truncation=True, max_length=64)
|
||
|
outputs = model(inputs)
|
||
|
hidden_states = outputs[1] # 获得句子向量
|
||
|
return list(hidden_states.numpy()[0])
|
||
|
|
||
|
words_list = []
|
||
|
for i in tqdm(range(len(words))):
|
||
|
words_list.append(getbert_vec(words[i]))#获得句子的bert embedding向量
|
||
|
|
||
|
for i in tqdm(range(len(words_list))):
|
||
|
for j in range(len(words_list[i])):
|
||
|
column = "bert_em" + str(j)
|
||
|
shixun.loc[i, column] = words_list[i][j]
|
||
|
|
||
|
shixun.to_csv(shixuns_bert_em_path,sep='\t', index=False, header=True)
|