|
|
|
|
# 导入需要的工具包
|
|
|
|
|
from py2neo import Graph, Node, Relationship, NodeMatcher, Subgraph
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import numpy as np
|
|
|
|
|
import os
|
|
|
|
|
import sys
|
|
|
|
|
sys.path.append(os.getcwd())
|
|
|
|
|
import json
|
|
|
|
|
from config import neo4j_url,neo4j_username,neo4j_password
|
|
|
|
|
from pprint import pprint as pp
|
|
|
|
|
|
|
|
|
|
# 连接Neo4j数据库
|
|
|
|
|
graph = Graph(neo4j_url, auth=(neo4j_username,neo4j_password) )
|
|
|
|
|
|
|
|
|
|
def get_initial_path(course_id, platform):
|
|
|
|
|
|
|
|
|
|
course_query = "match(c:`教学课堂`) where c.course_id='{}' return c.course_id".format(course_id)
|
|
|
|
|
# 查询course_id信息,获取知识森林中课堂信息
|
|
|
|
|
course_result = graph.run(course_query).data()
|
|
|
|
|
|
|
|
|
|
# 判断course_id是否存在,如果存在,进行如下查询操作,返回查询结果;如不存在,返回空值
|
|
|
|
|
if course_result:
|
|
|
|
|
|
|
|
|
|
# 知识森林查询实训相关节点
|
|
|
|
|
shixun_query = '''match(c:`教学课堂`) where c.course_id="{}" match(c)-[:`课堂课程`]->(s:`实践课程`)
|
|
|
|
|
match(s)-[:`课程章节`]->(st:`章节`) match(st)-[:`章节知识点`]->(kn:`知识点`)
|
|
|
|
|
match(kn)-[:`知识点实训`]->(shixun:`实训`) return st.stage_id as stage_id,st.stage_name as stage_name,
|
|
|
|
|
st.stage_sort as stage_sort,kn.knowledge_id as knowledge_id,kn.knowledge as knowledge,
|
|
|
|
|
shixun.shixun_id as shixun_id,shixun.shixun_name as shixun_name,shixun.link as shixun_link,
|
|
|
|
|
count(shixun.shixun_id) as shixun_num'''.format(course_id)
|
|
|
|
|
|
|
|
|
|
# 获取实训相关信息,若不存在,为统一处理,返回空DataFrame
|
|
|
|
|
shixun = graph.run(shixun_query).data()
|
|
|
|
|
|
|
|
|
|
if shixun:
|
|
|
|
|
# 将查询结果转化为dataframe格式
|
|
|
|
|
shixun_data = pd.DataFrame(shixun)
|
|
|
|
|
else:
|
|
|
|
|
# 实训结果不存在,赋予一个相同结构的空值
|
|
|
|
|
shixun_data = pd.DataFrame(columns=["stage_id","stage_name","stage_sort","knowledge_id",
|
|
|
|
|
"knowledge","shixun_id","shixun_name","shixun_link","shixun_num"])
|
|
|
|
|
|
|
|
|
|
# 知识森林查询教学视频相关节点
|
|
|
|
|
video_query = '''match(c:`教学课堂`) where c.course_id="{}" match(c)-[:`课堂课程`]->(s:`实践课程`)
|
|
|
|
|
match(s)-[:`课程章节`]->(st:`章节`) match(st)-[:`章节知识点`]->(kn:`知识点`)
|
|
|
|
|
match(kn)-[:`知识点视频`]->(video:`教学视频`) return st.stage_id as stage_id, st.stage_name as stage_name,
|
|
|
|
|
st.stage_sort as stage_sort,kn.knowledge_id as knowledge_id,kn.knowledge as knowledge,
|
|
|
|
|
video.video_item_id as video_id,video.video_name as video_name,video.link as video_link,
|
|
|
|
|
count(video.video_item_id) as video_num'''.format(course_id)
|
|
|
|
|
|
|
|
|
|
# 获取教学视频相关信息,若不存在,为统一处理,返回空DataFrame
|
|
|
|
|
video = graph.run(video_query).data()
|
|
|
|
|
|
|
|
|
|
# 判断获取的教学视频是否为空
|
|
|
|
|
if video:
|
|
|
|
|
# 将教学视频的查询结果转化为dataframe格式
|
|
|
|
|
video_data = pd.DataFrame(video)
|
|
|
|
|
else:
|
|
|
|
|
# 教学视频为空,返回相同数据结构的空值
|
|
|
|
|
video_data = pd.DataFrame(columns=["stage_id","stage_name","stage_sort","knowledge_id",
|
|
|
|
|
"knowledge","video_id","video_name","video_link","video_num"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 知识森林查询教学课件相关节点
|
|
|
|
|
att_query = '''match(c:`教学课堂`) where c.course_id="{}" match(c)-[:`课堂课程`]->(s:`实践课程`)
|
|
|
|
|
match(s)-[:`课程章节`]->(st:`章节`) match(st)-[:`章节知识点`]->(kn:`知识点`)
|
|
|
|
|
match(kn)-[:`知识点课件`]->(att:`课件`) return st.stage_id as stage_id,st.stage_name as stage_name,
|
|
|
|
|
st.stage_sort as stage_sort,kn.knowledge_id as knowledge_id,kn.knowledge as knowledge ,
|
|
|
|
|
att.attachment_id as attachment_id,att.filename as filename,att.link as attachment_link,
|
|
|
|
|
count(att.attachment_id) as attachment_num'''.format(course_id)
|
|
|
|
|
|
|
|
|
|
#获取教学课件相关信息,若不存在,为统一处理,返回空DataFrame
|
|
|
|
|
att = graph.run(att_query).data()
|
|
|
|
|
|
|
|
|
|
if att:
|
|
|
|
|
# 将教学课件的查询结果转换成dataframe格式
|
|
|
|
|
att_data = pd.DataFrame(att)
|
|
|
|
|
else:
|
|
|
|
|
# 教学课件为空,返回相同数据结构的空值
|
|
|
|
|
att_data = pd.DataFrame(columns=["stage_id","stage_name","stage_sort","knowledge_id","knowledge",
|
|
|
|
|
"attachment_id","filename","attachment_link"])
|
|
|
|
|
|
|
|
|
|
#将三种教学资源合并
|
|
|
|
|
merged_data = pd.merge(shixun_data,video_data,on=['stage_id','stage_name',"stage_sort",'knowledge_id',
|
|
|
|
|
'knowledge'],how='outer')
|
|
|
|
|
merged_data = pd.merge(merged_data,att_data,on=['stage_id','stage_name',"stage_sort",'knowledge_id',
|
|
|
|
|
'knowledge'],how='outer')
|
|
|
|
|
# 默认为头歌地址,添加ilearning地址
|
|
|
|
|
if platform == '1':
|
|
|
|
|
merged_data['attachment_link'] = merged_data['attachment_link'].str.replace('www.', 'ilearning.')
|
|
|
|
|
merged_data['shixun_link'] = merged_data['shixun_link'].str.replace('www.', 'ilearning.')
|
|
|
|
|
merged_data['video_link'] = merged_data['video_link'].str.replace('www.', 'ilearning.')
|
|
|
|
|
|
|
|
|
|
#对于合并后的结果,对教学资源的数量进行填充
|
|
|
|
|
merged_data['shixun_num'].fillna(0,inplace=True)
|
|
|
|
|
merged_data['video_num'].fillna(0,inplace=True)
|
|
|
|
|
merged_data['attachment_num'].fillna(0,inplace=True)
|
|
|
|
|
|
|
|
|
|
# 分组获取实训字典
|
|
|
|
|
shixun = (merged_data.groupby(['stage_id','stage_name',"stage_sort",'knowledge_id','knowledge',
|
|
|
|
|
'shixun_num','video_num','attachment_num'])
|
|
|
|
|
.apply(lambda x:x[['shixun_id','shixun_name', 'shixun_link']].to_dict('r'))
|
|
|
|
|
.reset_index(name='shixun'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 分组获取教学视频字典
|
|
|
|
|
video = (merged_data.groupby(['stage_id','stage_name',"stage_sort",'knowledge_id','knowledge',
|
|
|
|
|
'shixun_num','video_num','attachment_num'])
|
|
|
|
|
.apply(lambda x:x[['video_id','video_name', 'video_link']].to_dict('r'))
|
|
|
|
|
.reset_index(name='video'))
|
|
|
|
|
|
|
|
|
|
# 分组获取教学课件字典
|
|
|
|
|
att = (merged_data.groupby(['stage_id','stage_name',"stage_sort",'knowledge_id','knowledge',
|
|
|
|
|
'shixun_num','video_num','attachment_num'])
|
|
|
|
|
.apply(lambda x:x[['attachment_id','filename', 'attachment_link']].to_dict('r'))
|
|
|
|
|
.reset_index(name='attachment'))
|
|
|
|
|
|
|
|
|
|
# 对分好组的教学资源字典按照章节知识点进行合并
|
|
|
|
|
shixun_video = shixun.merge(video,how='outer',on=['stage_id','stage_name',"stage_sort",'knowledge_id',
|
|
|
|
|
'knowledge','shixun_num','video_num','attachment_num'])
|
|
|
|
|
res=shixun_video.merge(att,how='outer',on=['stage_id','stage_name',"stage_sort",'knowledge_id','knowledge',
|
|
|
|
|
'shixun_num','video_num','attachment_num'])
|
|
|
|
|
|
|
|
|
|
# 按照知识点进行分组,并命名为知识点
|
|
|
|
|
result = (res.groupby(['stage_id','stage_name',"stage_sort"])
|
|
|
|
|
.apply(lambda x :x[['knowledge_id','knowledge','shixun_num','video_num','attachment_num',
|
|
|
|
|
'shixun','video','attachment']].to_dict('r'))
|
|
|
|
|
.reset_index(name='knowledge'))
|
|
|
|
|
|
|
|
|
|
# 将最终结果转换成JSON格式
|
|
|
|
|
result = json.loads(result.to_json(orient='records',force_ascii=False))
|
|
|
|
|
return result
|
|
|
|
|
else:
|
|
|
|
|
# 若course_id为空,或者course_id不存在,返回空字典
|
|
|
|
|
return {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
# 读取数据
|
|
|
|
|
course_id = "19043"
|
|
|
|
|
recommend_results = get_initial_path(course_id,'1')
|
|
|
|
|
pp(recommend_results)
|
|
|
|
|
|