import os import sys sys.path.append(os.getcwd()) import pandas as pd import numpy as np from tqdm import tqdm import faiss import warnings import pickle import collections from datetime import datetime from utils import get_file_size from config import logger from config import subjects_embed_path, subject_save_path from config import need_metric_recall from config import subject_youtubednn_usercf_recall_dict from config import subject_youtube_user_faiss_model_path from config import subject_youtube_user_embedding_data from config import subject_youtube_user_embedding_index_dict from config import samples_mode from config import test_user_id from matching.subject.recall_comm import get_all_select_df from matching.subject.recall_comm import get_user_info_df, get_item_info_df from matching.subject.recall_comm import get_user_item_time_dict from matching.subject.recall_comm import get_all_hist_and_last_select from matching.subject.recall_comm import get_recall_item_info_dict from matching.subject.recall_comm import get_item_topk_select from matching.subject.recall_comm import metrics_recall from matching.subject.item_embedding_recall import embdding_i2i_sim tqdm.pandas() warnings.filterwarnings('ignore') def youtube_u2u_embedding_sim(user_embedding_index_dict, user_emb, user_index, topk): """ 获取youtube user embedding用户相似性矩阵 topk指的是每个user, faiss返回最相似的topk个user """ # 加载之前保存的youtube user embedding相似性矩阵 if os.path.exists(subject_save_path + 'youtube_u2u_sim.pkl') and \ (get_file_size(subject_save_path + 'youtube_u2u_sim.pkl') > 1): user_sim_dict = pickle.load(open(subject_save_path + 'youtube_u2u_sim.pkl', 'rb')) return user_sim_dict # 相似度查询,给每个索引位置上的向量返回topk个item以及相似度 sim, idx = user_index.search(user_emb, topk) # 将向量检索的结果保存成原始id的对应关系 user_sim_dict = collections.defaultdict(dict) for target_idx, sim_value_list, rele_idx_list in tqdm(zip(range(len(user_emb)), sim, idx)): target_raw_id = user_embedding_index_dict[target_idx] # 从1开始是为了去掉物品本身, 所以最终获得的相似物品只有topk-1 for rele_idx, sim_value in zip(rele_idx_list[1:], sim_value_list[1:]): rele_raw_id = user_embedding_index_dict[rele_idx] user_sim_dict[target_raw_id][rele_raw_id] = user_sim_dict.get(target_raw_id, {}).get(rele_raw_id, 0) + sim_value # 保存youtube_u2u_sim相似度矩阵 pickle.dump(user_sim_dict, open(subject_save_path + 'youtube_u2u_sim.pkl', 'wb')) return user_sim_dict def init_youtube_usercf_recall(): """ 初始化召回用到的一些数据 """ global train_hist_select_df global user_item_time_dict global u2u_sim, sim_user_topk global recall_item_num global item_topk_select global item_info_dict global emb_i2i_sim global train_last_select_df global youtube_user_embedding_index_dict global youtube_user_emb global youtube_user_index logger.info("加载物品行为数据") all_select_df = get_all_select_df(offline=False) logger.info("获取用户信息数据") users_info = get_user_info_df() all_select_df = all_select_df.merge(users_info, how='left', on='user_id') sim_user_topk = 120 recall_item_num = 100 logger.info('获取物品基本信息') item_info_df = get_item_info_df() logger.info('获取物品信息字典') item_info_dict = get_recall_item_info_dict(item_info_df) logger.info('获取物品embedding相似度矩阵') item_emb_df = pd.read_csv(subjects_embed_path, sep='\t', encoding='utf-8') emb_i2i_sim = embdding_i2i_sim(item_emb_df, topk=recall_item_num) # 为了召回评估,提取最后一次选择作为召回评估 # 如果不需要做召回评估直接使用全量的训练集进行召 if need_metric_recall: logger.info('获取物品行为数据历史和最后一次选择') train_hist_select_df, train_last_select_df = get_all_hist_and_last_select(all_select_df) else: train_hist_select_df = all_select_df train_hist_select_df['user_id'].dropna(inplace=True) # 使用youtube user embedding, 使用faiss计算用户相似度 # YoutubeDNN中使用的是用户行为序列训练的user embedding # 如果用户行为序列普遍比较短的话,user embedding的效果可能不是很好 logger.info('获取youtube user embedding相似度矩阵') youtube_user_embedding_index_dict = pickle.load(open(subject_youtube_user_embedding_index_dict, 'rb')) youtube_user_emb = pickle.load(open(subject_youtube_user_embedding_data, 'rb')) youtube_user_index = faiss.read_index(subject_youtube_user_faiss_model_path) u2u_sim = youtube_u2u_embedding_sim(youtube_user_embedding_index_dict, youtube_user_emb, youtube_user_index, topk=recall_item_num) logger.info('获取用户选择物品列表') user_item_time_dict = get_user_item_time_dict(train_hist_select_df) logger.info('获取选择次数最多的物品') item_topk_select = get_item_topk_select(train_hist_select_df, k=recall_item_num) def youtube_usercf_recall(user_id, topk): """ youtube usercf召回调用接口 """ start_time = datetime.now() logger.info(f"本次需要进行youtube usercf召回的用户ID: {user_id}") recall_results = {} recall_results.clear() if user_id not in user_item_time_dict: return recall_results recall_results = user_based_recommend(user_id, user_item_time_dict, u2u_sim, topk, topk, item_topk_select, item_info_dict, emb_i2i_sim) # 计算耗时毫秒 end_time = datetime.utcnow() cost_time_millisecond = round(float((end_time - start_time).microseconds / 1000.0), 3) logger.info(f"本次召回耗时: {cost_time_millisecond} 毫秒") return recall_results def user_based_recommend(user_id, user_item_time_dict, u2u_sim, sim_user_topk, recall_item_num, item_topk_select, item_info_dict, emb_i2i_sim): """ 基于用户协同过滤+关联规则的召回 :param user_id: 用户id :param user_item_time_dict: 字典, 根据选择时间获取用户的选择物品序列 {user1: [(item1, time1), (item2, time2)..]...} :param u2u_sim: 字典,用户相似性矩阵 :param sim_user_topk: 整数,选择与当前用户最相似的k个用户 :param recall_item_num: 整数,需要召回的物品数量 :param item_topk_select: 列表,选择次数最多的物品列表,用于召回补全 :param item_info_dict: 字典,物品信息字典 :param emb_i2i_sim: 字典,物品embedding相似度矩阵 :return: 召回的物品列表 [(item1, score1), (item2, score2)...] """ # 获取用户选择的物品 user_item_time_list = user_item_time_dict[user_id] # 存在一个用户多次选择某个物品,去重 user_hist_items = set([i for i, t in user_item_time_list]) filtered_item_name_list = [] filtered_item_name_list.clear() items_rank = {} # 根据用户相似度矩阵取sim_user_topk个用户选择的物品 for sim_u, wuv in sorted(u2u_sim[user_id].items(), key=lambda x: x[1], reverse=True)[:sim_user_topk]: for cur_item, select_time in user_item_time_dict[sim_u]: # 过滤历史选择和不在物品信息字典中的物品 if (cur_item in user_hist_items) or (cur_item not in item_info_dict): continue cur_item_name = item_info_dict[cur_item]['subject_name'] # 过滤物品名称重复的 if cur_item_name in filtered_item_name_list: continue filtered_item_name_list.append(cur_item_name) items_rank.setdefault(cur_item, 0) content_weight = 1.0 loc_weight = 0.9 created_time_weight = 0.8 # 当前物品与该用户选择的历史物品进行一个权重选择 for loc, (hist_item, select_time) in enumerate(user_item_time_list): if hist_item not in item_info_dict: continue # 选择时的相对位置权重 loc_weight += 0.9 ** (len(user_item_time_list) - loc) # 物品embedding相似性权重 if emb_i2i_sim.get(cur_item, {}).get(hist_item, None) is not None: content_weight += emb_i2i_sim[cur_item][hist_item] if emb_i2i_sim.get(hist_item, {}).get(cur_item, None) is not None: content_weight += emb_i2i_sim[hist_item][cur_item] # 创建时间差权重 cur_item_created_time = item_info_dict[cur_item]['created_at_ts'] hist_item_created_time = item_info_dict[hist_item]['created_at_ts'] created_time_weight += np.exp(0.8 * np.abs(cur_item_created_time - hist_item_created_time)) items_rank[cur_item] += loc_weight * content_weight * created_time_weight * wuv # 提前结束计算,没必要计算所有用户,否则在线召回将耗时很长 # 只计算最相似用户选择的物品。等于是捕捉最相似用户最近的兴趣 if len(items_rank) >= (recall_item_num * 2): items_rank = sorted(items_rank.items(), key=lambda x: x[1], reverse=True)[:recall_item_num] return items_rank # 热度补全 if len(items_rank) < recall_item_num: for index, item in enumerate(item_topk_select): # 填充的item应该不在原来的列表中 if item in items_rank.items(): continue items_rank[item] = - index - 100 # 随便给个复数就行 # 达到召回的数量 if len(items_rank) == recall_item_num: break items_rank = sorted(items_rank.items(), key=lambda x: x[1], reverse=True)[:recall_item_num] return items_rank def youtube_usercf_recall_train(): """ youtube usercf召回训练和评估 """ # 调用初始化召回用到的一些数据 init_youtube_usercf_recall() # 只在采样模式下计算所有用户的召回数据并进行召回效果评估 # 如果用全量数据计算所有用户的召回数据会非常耗时 if samples_mode == True and need_metric_recall: logger.info('生成youtube usercf所有用户的召回列表') user_recall_items_dict = collections.defaultdict(dict) for user_id in tqdm(train_hist_select_df['user_id'].unique()): user_recall_items_dict[user_id] = user_based_recommend(user_id, user_item_time_dict, u2u_sim, sim_user_topk, recall_item_num, item_topk_select, item_info_dict, emb_i2i_sim) logger.info('保存youtube usercf召回结果') pickle.dump(user_recall_items_dict, open(subject_youtubednn_usercf_recall_dict, 'wb')) logger.info('youtube usercf召回效果评估') metrics_recall(user_recall_items_dict, train_last_select_df, topk=recall_item_num) if __name__ == '__main__': youtube_usercf_recall_train() recall_results = youtube_usercf_recall(user_id=test_user_id, topk=20) print(recall_results)