import os from config import samples_mode import time if __name__ == '__main__': # 训练召回模型 # print("**"*10+"build_keywords"+"**"*10) # os.system('python ./matching/shixun/build_keywords.py') # print("**"*10+"faiss_word2vec"+"**"*10) # os.system('python ./matching/shixun/faiss_word2vec.py') # print("**"*10+"hnsw_faiss"+"**"*10) # os.system('python ./matching/shixun/hnsw_faiss.py') # print("**"*10+"item_embedding"+"**"*10) # os.system('python ./matching/shixun/item_embedding.py') # print("**"*10+"item_merge_emb"+"**"*10) # os.system('python ./matching/shixun/item_merge_emb.py') # print("**"*10+"Item2Vec"+"**"*10) # os.system('python ./matching/shixun/Item2Vec.py') # print("**"*10+"cold_start_recall"+"**"*10) # os.system('python ./matching/shixun/cold_start_recall.py') # print("**"*10+"item_embedding_recall"+"**"*10) # os.system('python ./matching/shixun/item_embedding_recall.py') # print("**"*10+"itemcf_recall"+"**"*10) # os.system('python ./matching/shixun/itemcf_recall.py') # print("**"*10+"youtubednn_recall_train"+"**"*10) # os.system('python ./matching/shixun/youtubednn_recall_train.py') # print("**"*10+"youtube_usercf_recall"+"**"*10) # os.system('python ./matching/shixun/youtube_usercf_recall.py') # print("**"*10+"dssm_recall_trainl"+"**"*10) # os.system('python ./matching/shixun/dssm_recall_train.py') # print("**"*10+"dssm_usercf_recall"+"**"*10) # os.system('python ./matching/shixun/dssm_usercf_recall.py') # print("**"*10+"fm_recall_train"+"**"*10) # os.system('python ./matching/shixun/fm_recall_train.py') # print("**"*10+"mind_recall_train"+"**"*10) # os.system('python ./matching/shixun/mind_recall_train.py') # print("**"*10+"pinsage_recall_train"+"**"*10) # os.system('python ./matching/shixun/pinsage_recall_train.py') # 全量数据计算每路离线召回结果耗时太长 # 只在增量数据召回时合并多路召回的结果 # if samples_mode: # print("**"*10+"multi_recall_combine"+"**"*10) # os.system('python ./matching/shixun/multi_recall_combine.py') # 排序特征工程 # print("**"*10+"bert_embedding"+"**"*10) # os.system('python ./ranking/shixun/bert_embedding.py') # print("**"*10+"rank_features_engineering"+"**"*10) # os.system('python ./ranking/shixun/rank_features_engineering.py') time.sleep(60*60*4) # 训练排序模型 print("**"*10+"xdeepfm_ranker_train"+"**"*10) os.system('python ./ranking/shixun/xdeepfm_ranker_train.py') print("**"*10+"difm_ranker_train"+"**"*10) os.system('python ./ranking/shixun/difm_ranker_train.py') print("**"*10+"bst_ranker_train"+"**"*10) os.system('python ./ranking/shixun/bst_ranker_train.py')