from tqdm import tqdm from ltp import LTP from gensim.models import KeyedVectors import os import sys sys.path.append(os.getcwd()) from config import subjects_data_path,subjects_bert_em_path from utils import finalcut import pandas as pd import re import logging from transformers import AutoTokenizer, TFAutoModel from config import bert_base_chinese logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) tqdm.pandas() # 加载大规模预训练Bert模型 bert_model = bert_base_chinese tokenizer = AutoTokenizer.from_pretrained(bert_model) model = TFAutoModel.from_pretrained(bert_model,output_hidden_states=True) # 模型是否返回所有隐藏状态。 subject = pd.read_csv(subjects_data_path,sep='\t',encoding='utf-8') subject = subject.drop(['disciplines_id', 'disciplines_name', 'sub_discipline_id', 'status', 'updated_at', 'publish_time', 'homepage_show','repertoire_id', 'score_count', 'initiative_study', 'course_used_count','school_used_count','initiative_school_used_count', 'initiative_passed_count','initiative_challenge_count','initiative_evaluate_count', 'video_study_time','initiative_video_study_time','initiative_study_pdf_attachment_count','created_at_ts'], axis=1) #添加bert_em列 for i in tqdm(range(768)): bert_em = "bert_em" + str(i) subject[bert_em] = 0. # 准备数据 subject_name = subject["subject_name"] sub_dis_name = subject["sub_discipline_name"] tags_name = subject["tag_names"] subject_name.fillna(value="",inplace=True) sub_dis_name.fillna(value="",inplace=True) tags_name.fillna(value="",inplace=True) subject_text = subject_name+sub_dis_name+tags_name words = [] for i in tqdm(range(len(subject_text))): words.append(finalcut((subject_text[i]))) #删除句子中无效字符 def getbert_vec(word_list): # 输入测试句子 inputs = tokenizer(word_list, return_tensors="tf", padding="max_length", truncation=True, max_length=64) outputs = model(inputs) hidden_states = outputs[1] # 获得句子向量 return list(hidden_states.numpy()[0]) words_list = [] for i in tqdm(range(len(words))): words_list.append(getbert_vec(words[i]))#获得句子的bert embedding向量 for i in tqdm(range(len(words_list))): for j in range(len(words_list[i])): column = "bert_em" + str(j) subject.loc[i, column] = words_list[i][j] subject = subject.drop(["subject_name","sub_discipline_name","tag_names"], axis=1) subject.to_csv(subjects_bert_em_path,sep='\t', index=False, header=True)