You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
EduCoder_Study_RS/subject_recommend_online.py

75 lines
3.1 KiB

import json
from datetime import datetime
from config import logger
from config import test_user_id
from ranking.subject.user_recall_rank_features import init_rank_features
from ranking.subject.user_recall_rank_features import build_rank_features_online
from matching.subject.cold_start_recall import cold_start_user_recall
from matching.subject.multi_recall_predict import multi_recall_predict
init_rank_features()
from ranking.subject.xdeepfm_ranker_predict import xdeepfm_ranker_predict
from ranking.subject.bst_ranker_predict import bst_ranker_predict
from ranking.subject.difm_ranker_predict import difm_ranker_predict
def subject_recommend_online(user_id, disciplines_id_list=None, topk=10, rank_method='1'):
"""
根据用户ID获取推荐的实训ID列表
1. 使用多路召回获取用户的实训ID列表
2. 根据召回列表生成排序模型特征
3. 用排序模型对召回列表重新排序
4. 返回排序后的结果
"""
start_time = datetime.now()
logger.info(f"本次需要进行推荐的用户ID: {user_id}")
recommend_results = {}
recommend_results.clear()
# 1.先进行多路召回
recommend_results, only_cold_start_recall = multi_recall_predict(user_id, disciplines_id_list, topk=topk)
if only_cold_start_recall and (len(recommend_results) > 0):
# 计算耗时毫秒
end_time = datetime.utcnow()
cost_time_millisecond = round(float((end_time - start_time).microseconds / 1000.0), 3)
logger.info(f"本次推荐总耗时: {cost_time_millisecond} 毫秒")
return recommend_results
# 2.构建排序模型特征
user_item_feats_df = build_rank_features_online(user_id, recommend_results)
# 3.使用排序模型对召回的候选物品进行排序
# 如果没有召回数据则根据兴趣标签使用冷启动召回推荐
if user_item_feats_df.empty:
recommend_results = cold_start_user_recall(disciplines_id_list, topk=topk)
else:
if topk > user_item_feats_df.shape[0]:
topk = user_item_feats_df.shape[0]
if rank_method == '0':
rank_results = xdeepfm_ranker_predict(user_item_feats_df, topk=topk)
elif rank_method == '1':
rank_results = bst_ranker_predict(user_item_feats_df, topk=topk)
elif rank_method == '2':
rank_results = difm_ranker_predict(user_item_feats_df, topk=topk)
recommend_results = dict(zip(rank_results['subject_id'], rank_results['subject_name']))
# 计算耗时毫秒
end_time = datetime.utcnow()
cost_time_millisecond = round(float((end_time - start_time).microseconds / 1000.0), 3)
logger.info(f"本次推荐总耗时: {cost_time_millisecond} 毫秒")
return recommend_results
if __name__ == '__main__':
recommend_results = subject_recommend_online(user_id=test_user_id,
disciplines_id_list=[],
topk=10,
rank_method='0')
print(json.dumps(recommend_results, ensure_ascii=False, indent=4))