Compare commits

..

No commits in common. 'master' and 'nyj_branch' have entirely different histories.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 172 KiB

@ -1,502 +0,0 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).
To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James Random Hacker.
<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice
That's all there is to it!

@ -1,171 +0,0 @@
# EspSoftwareSerial
## Implementation of the Arduino software serial library for the ESP8266 / ESP32 family
This fork implements interrupt service routine best practice.
In the receive interrupt, instead of blocking for whole bytes
at a time - voiding any near-realtime behavior of the CPU - only level
change and timestamp are recorded. The more time consuming phase
detection and byte assembly are done in the main code.
Except at high bitrates, depending on other ongoing activity,
interrupts in particular, this software serial adapter
supports full duplex receive and send. At high bitrates (115200bps)
send bit timing can be improved at the expense of blocking concurrent
full duplex receives, with the
`EspSoftwareSerial::UART::enableIntTx(false)` function call.
The same functionality is given as the corresponding AVR library but
several instances can be active at the same time. Speed up to 115200 baud
is supported. Besides a constructor compatible to the AVR SoftwareSerial class,
and updated constructor that takes no arguments exists, instead the `begin()`
function can handle the pin assignments and logic inversion.
It also has optional input buffer capacity arguments for byte buffer and ISR bit buffer.
This way, it is a better drop-in replacement for the hardware serial APIs on the ESP MCUs.
Please note that due to the fact that the ESPs always have other activities
ongoing, there will be some inexactness in interrupt timings. This may
lead to inevitable, but few, bit errors when having heavy data traffic
at high baud rates.
This library supports ESP8266, ESP32, ESP32-S2 and ESP32-C3 devices.
## Resource optimization
The memory footprint can be optimized to just fit the amount of expected
incoming asynchronous data.
For this, the `EspSoftwareSerial::UART` constructor provides two arguments. First, the
octet buffer capacity for assembled received octets can be set. Read calls are
satisfied from this buffer, freeing it in return.
Second, the signal edge detection buffer of 32bit fields can be resized.
One octet may require up to to 10 fields, but fewer may be needed,
depending on the bit pattern. Any read or write calls check this buffer
to assemble received octets, thus promoting completed octets to the octet
buffer, freeing fields in the edge detection buffer.
Look at the swsertest.ino example. There, on reset, ASCII characters ' ' to 'z'
are sent. This happens not as a block write, but in a single write call per
character. As the example uses a local loopback wire, every outgoing bit is
immediately received back. Therefore, any single write call causes up to
10 fields - depending on the exact bit pattern - to be occupied in the signal
edge detection buffer. In turn, as explained before, each single write call
also causes received bit assembly to be performed, promoting these bits from
the signal edge detection buffer to the octet buffer as soon as possible.
Explaining by way of contrast, if during a a single write call, perhaps because
of using block writing, more than a single octet is received, there will be a
need for more than 10 fields in the signal edge detection buffer.
The necessary capacity of the octet buffer only depends on the amount of incoming
data until the next read call.
For the swsertest.ino example, this results in the following optimized
constructor arguments to spend only the minimum RAM on buffers required:
The octet buffer capacity (`bufCapacity`) is 95 (93 characters net plus two tolerance).
The signal edge detection buffer capacity (`isrBufCapacity`) is 11, as each
single octet can have up to 11 bits on the wire,
which are immediately received during the write, and each
write call causes the signal edge detection to promote the previously sent and
received bits to the octet buffer.
In a more generalized scenario, calculate the bits (use message size in octets
times 10) that may be asynchronously received to determine the value for
`isrBufCapacity` in the constructor. Also use the number of received octets
that must be buffered for reading as the value of `bufCapacity`.
The more frequently your code calls write or read functions, the greater the
chances are that you can reduce the `isrBufCapacity` footprint without losing data,
and each time you call read to fetch from the octet buffer, you reduce the
need for space there.
## EspSoftwareSerial::Config and parity
The configuration of the data stream is done via a `EspSoftwareSerial::Config`
argument to `begin()`. Word lengths can be set to between 5 and 8 bits, parity
can be N(one), O(dd) or E(ven) and 1 or 2 stop bits can be used. The default is
`SWSERIAL_8N1` using 8 bits, no parity and 1 stop bit but any combination can
be used, e.g. `SWSERIAL_7E2`. If using EVEN or ODD parity, any parity errors
can be detected with the `readParity()` and `parityEven()` or `parityOdd()`
functions respectively. Note that the result of `readParity()` always applies
to the preceding `read()` or `peek()` call, and is undefined if they report
no data or an error.
To allow flexible 9-bit and data/addressing protocols, the additional parity
modes MARK and SPACE are also available. Furthermore, the parity mode can be
individually set in each call to `write()`.
This allows a simple implementation of protocols where the parity bit is used to
distinguish between data and addresses/commands ("9-bit" protocols). First set
up EspSoftwareSerial::UART with parity mode SPACE, e.g. `SWSERIAL_8S1`. This will add a
parity bit to every byte sent, setting it to logical zero (SPACE parity).
To detect incoming bytes with the parity bit set (MARK parity), use the
`readParity()` function. To send a byte with the parity bit set, just add
`MARK` as the second argument when writing, e.g. `write(ch, SWSERIAL_PARITY_MARK)`.
## Checking for correct pin selection / configuration
In general, most pins on the ESP8266 and ESP32 devices can be used by EspSoftwareSerial,
however each device has a number of pins that have special functions or require careful
handling to prevent undesirable situations, for example they are connected to the
on-board SPI flash memory or they are used to determine boot and programming modes
after powerup or brownouts. These pins are not able to be configured by this library.
The exact list for each device can be found in the
[ESP32 data sheet](https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf)
in sections 2.2 (Pin Descriptions) and 2.4 (Strapping pins). There is a discussion
dedicated to the use of GPIO12 in this
[note about GPIO12](https://github.com/espressif/esp-idf/tree/release/v3.2/examples/storage/sd_card#note-about-gpio12).
Refer to the `isValidPin()`, `isValidRxPin()` and `isValidTxPin()`
functions in the `EspSoftwareSerial::GpioCapabilities` class for the GPIO restrictions
enforced by this library by default.
The easiest and safest method is to test the object returned at runtime, to see if
it is valid. For example:
```
#include <SoftwareSerial.h>
#define MYPORT_TX 12
#define MYPORT_RX 13
EspSoftwareSerial::UART myPort;
[...]
Serial.begin(115200); // Standard hardware serial port
myPort.begin(38400, SWSERIAL_8N1, MYPORT_RX, MYPORT_TX, false);
if (!myPort) { // If the object did not initialize, then its configuration is invalid
Serial.println("Invalid EspSoftwareSerial pin configuration, check config");
while (1) { // Don't continue with invalid configuration
delay (1000);
}
}
[...]
```
## Using and updating EspSoftwareSerial in the esp8266com/esp8266 Arduino build environment
EspSoftwareSerial is both part of the BSP download for ESP8266 in Arduino,
and it is set up as a Git submodule in the esp8266 source tree,
specifically in `.../esp8266/libraries/SoftwareSerial` when using a Github
repository clone in your Arduino sketchbook hardware directory.
This supersedes any version of EspSoftwareSerial installed for instance via
the Arduino library manager, it is not required to install EspSoftwareSerial
for the ESP8266 separately at all, but doing so has ill effect.
The responsible maintainer of the esp8266 repository has kindly shared the
following command line instructions to use, if one wishes to manually
update EspSoftwareSerial to a newer release than pulled in via the ESP8266 Arduino BSP:
To update esp8266/arduino EspSoftwareSerial submodule to lastest master:
Clean it (optional):
```shell
$ rm -rf libraries/SoftwareSerial
$ git submodule update --init
```
Now update it:
```shell
$ cd libraries/SoftwareSerial
$ git checkout master
$ git pull
```

@ -1,71 +0,0 @@
#include "SoftwareSerial.h"
#ifndef D5
#if defined(ESP8266)
#define D8 (15)
#define D5 (14)
#define D7 (13)
#define D6 (12)
#define RX (3)
#define TX (1)
#elif defined(ESP32)
#define D8 (5)
#define D5 (18)
#define D7 (23)
#define D6 (19)
#define RX (3)
#define TX (1)
#endif
#endif
EspSoftwareSerial::UART swSer;
#ifdef ESP8266
auto logSer = EspSoftwareSerial::UART(-1, TX);
auto hwSer = Serial;
#else
auto logSer = Serial;
auto hwSer = Serial1;
#endif
constexpr uint32_t TESTBPS = 115200;
void setup() {
delay(2000);
#ifdef ESP8266
hwSer.begin(TESTBPS, ::SERIAL_8N1);
hwSer.swap();
#else
hwSer.begin(TESTBPS, ::SERIAL_8N1, D6, D5);
#endif
logSer.begin(115200);
logSer.println(PSTR("\nOne Wire Half Duplex Bitpattern and Datarate Test"));
swSer.begin(TESTBPS, EspSoftwareSerial::SWSERIAL_8N1, D6, D5);
swSer.enableIntTx(true);
logSer.println(PSTR("Tx on swSer"));
}
uint8_t val = 0xff;
void loop() {
swSer.write((uint8_t)0x00);
swSer.write(val);
swSer.write(val);
auto start = ESP.getCycleCount();
int rxCnt = 0;
while (ESP.getCycleCount() - start < ESP.getCpuFreqMHz() * 1000000 / 10) {
if (hwSer.available()) {
auto rxVal = hwSer.read();
if ((!rxCnt && rxVal) || (rxCnt && rxVal != val)) {
logSer.printf(PSTR("Rx bit error: tx = 0x%02x, rx = 0x%02x\n"), val, rxVal);
}
++rxCnt;
}
}
if (rxCnt != 3) {
logSer.printf(PSTR("Rx cnt error, tx = 0x%02x\n"), val);
}
++val;
if (!val) {
logSer.println("Starting over");
}
}

@ -1,74 +0,0 @@
// circular_mp_test.cpp : This file contains the 'main' function. Program execution begins and ends there.
//
#include <iostream>
#include <thread>
#include <chrono>
#include <vector>
#include "circular_queue/circular_queue_mp.h"
struct qitem
{
// produer id
int id;
// monotonic increasing value
int val = 0;
};
constexpr int TOTALMESSAGESTARGET = 60000000;
// reserve one thread as consumer
const auto THREADS = std::thread::hardware_concurrency() / 2 - 1;
const int MESSAGES = TOTALMESSAGESTARGET / THREADS;
circular_queue<std::thread> threads(THREADS);
circular_queue_mp<qitem> queue(threads.capacity()* MESSAGES / 10);
std::vector<int> checks(threads.capacity());
int main()
{
using namespace std::chrono_literals;
std::cerr << "Utilizing " << THREADS << " producer threads" << std::endl;
for (int i = 0; i < threads.capacity(); ++i)
{
threads.push(std::thread([i]() {
for (int c = 0; c < MESSAGES;)
{
// simulate some load
auto start = std::chrono::system_clock::now();
while (std::chrono::system_clock::now() - start < 1us);
if (queue.push({ i, c }))
{
++c;
}
else
{
//std::cerr << "queue full" << std::endl;
//std::this_thread::sleep_for(10us);
}
//if (0 == c % 10000) std::this_thread::sleep_for(10us);
}
}));
}
for (int o = 0; o < threads.available() * MESSAGES; ++o)
{
auto now = std::chrono::system_clock::now();
while (!queue.available())
{
auto starvedFor = std::chrono::system_clock::now() - now;
if (starvedFor > 20s) std::cerr << "queue starved for > 20s" << std::endl;
//std::this_thread::sleep_for(20ms);
}
auto item = queue.pop();
if (checks[item.id] != item.val)
{
std::cerr << "item mismatch" << std::endl;
}
checks[item.id] = item.val + 1;
if (0 == item.val % 1000) std::this_thread::sleep_for(100us);
}
while (threads.available())
{
auto thread = threads.pop();
thread.join();
}
return 0;
}

@ -1,279 +0,0 @@
#include <SoftwareSerial.h>
// On ESP8266:
// Local EspSoftwareSerial loopback, connect D5 (rx) and D6 (tx).
// For local hardware loopback, connect D5 to D8 (tx), D6 to D7 (rx).
// For hardware send/sink, connect D7 (rx) and D8 (tx).
// Hint: The logger is run at 9600bps such that enableIntTx(true) can remain unchanged. Blocking
// interrupts severely impacts the ability of the EspSoftwareSerial devices to operate concurrently
// and/or in duplex mode.
// Operating in software serial full duplex mode, runs at 19200bps and few errors (~2.5%).
// Operating in software serial half duplex mode (both loopback and repeater),
// runs at 57600bps with nearly no errors.
// Operating loopback in full duplex, and repeater in half duplex, runs at 38400bps with nearly no errors.
// On ESP32:
// For EspSoftwareSerial or hardware send/sink, connect D5 (rx) and D6 (tx).
// Hardware Serial2 defaults to D4 (rx), D3 (tx).
// For local hardware loopback, connect D5 (rx) to D3 (tx), D6 (tx) to D4 (rx).
#ifndef D5
#if defined(ESP8266)
#define D8 (15)
#define D5 (14)
#define D7 (13)
#define D6 (12)
#define RX (3)
#define TX (1)
#elif defined(ESP32)
#define D8 (5)
#define D5 (18)
#define D7 (23)
#define D6 (19)
#define RX (3)
#define TX (1)
#endif
#endif
// Pick only one of HWLOOPBACK, HWSOURCESWSINK, or HWSOURCESINK
//#define HWLOOPBACK 1
//#define HWSOURCESWSINK 1
//#define HWSOURCESINK 1
#define HALFDUPLEX 1
#ifdef ESP32
constexpr int IUTBITRATE = 19200;
#else
constexpr int IUTBITRATE = 19200;
#endif
#if defined(ESP8266)
constexpr EspSoftwareSerial::Config swSerialConfig = EspSoftwareSerial::SWSERIAL_8E1;
constexpr SerialConfig hwSerialConfig = ::SERIAL_8E1;
#elif defined(ESP32)
constexpr EspSoftwareSerial::Config swSerialConfig = EspSoftwareSerial::SWSERIAL_8E1;
constexpr uint32_t hwSerialConfig = ::SERIAL_8E1;
#else
constexpr unsigned swSerialConfig = 3;
#endif
constexpr bool invert = false;
constexpr int BLOCKSIZE = 16; // use fractions of 256
unsigned long start;
const char effTxTxt[] PROGMEM = "eff. tx: ";
const char effRxTxt[] PROGMEM = "eff. rx: ";
int txCount;
int rxCount;
int expected;
int rxErrors;
int rxParityErrors;
constexpr int ReportInterval = IUTBITRATE / 8;
#if defined(ESP8266)
#if defined(HWLOOPBACK) || defined(HWSOURCESWSINK)
HardwareSerial& hwSerial(Serial);
EspSoftwareSerial::UART serialIUT;
EspSoftwareSerial::UART logger;
#elif defined(HWSOURCESINK)
HardwareSerial& serialIUT(Serial);
EspSoftwareSerial::UART logger;
#else
EspSoftwareSerial::UART serialIUT;
HardwareSerial& logger(Serial);
#endif
#elif defined(ESP32)
#if defined(HWLOOPBACK) || defined (HWSOURCESWSINK)
HardwareSerial& hwSerial(Serial2);
EspSoftwareSerial::UART serialIUT;
#elif defined(HWSOURCESINK)
HardwareSerial& serialIUT(Serial2);
#else
EspSoftwareSerial::UART serialIUT;
#endif
HardwareSerial& logger(Serial);
#else
EspSoftwareSerial::UART serialIUT(14, 12);
HardwareSerial& logger(Serial);
#endif
void setup() {
#if defined(ESP8266)
#if defined(HWLOOPBACK) || defined(HWSOURCESINK) || defined(HWSOURCESWSINK)
Serial.begin(IUTBITRATE, hwSerialConfig, ::SERIAL_FULL, 1, invert);
Serial.swap();
Serial.setRxBufferSize(2 * BLOCKSIZE);
logger.begin(9600, EspSoftwareSerial::SWSERIAL_8N1, -1, TX);
#else
logger.begin(9600);
#endif
#if !defined(HWSOURCESINK)
serialIUT.begin(IUTBITRATE, swSerialConfig, D5, D6, invert, 2 * BLOCKSIZE);
#ifdef HALFDUPLEX
serialIUT.enableIntTx(false);
#endif
#endif
#elif defined(ESP32)
#if defined(HWLOOPBACK) || defined(HWSOURCESWSINK)
Serial2.begin(IUTBITRATE, hwSerialConfig, D4, D3, invert);
Serial2.setRxBufferSize(2 * BLOCKSIZE);
#elif defined(HWSOURCESINK)
serialIUT.begin(IUTBITRATE, hwSerialConfig, D5, D6, invert);
serialIUT.setRxBufferSize(2 * BLOCKSIZE);
#endif
#if !defined(HWSOURCESINK)
serialIUT.begin(IUTBITRATE, swSerialConfig, D5, D6, invert, 2 * BLOCKSIZE);
#ifdef HALFDUPLEX
serialIUT.enableIntTx(false);
#endif
#endif
logger.begin(9600);
#else
#if !defined(HWSOURCESINK)
serialIUT.begin(IUTBITRATE);
#endif
logger.begin(9600);
#endif
logger.println(PSTR("Loopback example for EspEspSoftwareSerial"));
start = micros();
txCount = 0;
rxCount = 0;
rxErrors = 0;
rxParityErrors = 0;
expected = -1;
}
unsigned char c = 0;
void loop() {
#ifdef HALFDUPLEX
char block[BLOCKSIZE];
#endif
char inBuf[BLOCKSIZE];
for (int i = 0; i < BLOCKSIZE; ++i) {
#ifndef HALFDUPLEX
#ifdef HWSOURCESWSINK
hwSerial.write(c);
#else
serialIUT.write(c);
#endif
#ifdef HWLOOPBACK
int avail = hwSerial.available();
while ((0 == (i % 8)) && avail > 0) {
int inCnt = hwSerial.read(inBuf, min(avail, min(BLOCKSIZE, hwSerial.availableForWrite())));
hwSerial.write(inBuf, inCnt);
avail -= inCnt;
}
#endif
#else
block[i] = c;
#endif
c = (c + 1) % 256;
++txCount;
}
#ifdef HALFDUPLEX
#ifdef HWSOURCESWSINK
hwSerial.write(block, BLOCKSIZE);
#else
serialIUT.write(block, BLOCKSIZE);
#endif
#endif
#ifdef HWSOURCESINK
#if defined(ESP8266)
if (serialIUT.hasOverrun()) { logger.println(PSTR("serialIUT.overrun")); }
#endif
#else
if (serialIUT.overflow()) { logger.println(PSTR("serialIUT.overflow")); }
#endif
int inCnt;
uint32_t deadlineStart;
#ifdef HWLOOPBACK
// starting deadline for the first bytes to become readable
deadlineStart = ESP.getCycleCount();
inCnt = 0;
while ((ESP.getCycleCount() - deadlineStart) < (1000000UL * 12 * BLOCKSIZE) / IUTBITRATE * 24 * ESP.getCpuFreqMHz()) {
int avail = hwSerial.available();
inCnt += hwSerial.read(&inBuf[inCnt], min(avail, min(BLOCKSIZE - inCnt, hwSerial.availableForWrite())));
if (inCnt >= BLOCKSIZE) { break; }
// wait for more outstanding bytes to trickle in
if (avail) deadlineStart = ESP.getCycleCount();
}
hwSerial.write(inBuf, inCnt);
#endif
// starting deadline for the first bytes to come in
deadlineStart = ESP.getCycleCount();
inCnt = 0;
while ((ESP.getCycleCount() - deadlineStart) < (1000000UL * 12 * BLOCKSIZE) / IUTBITRATE * 8 * ESP.getCpuFreqMHz()) {
int avail;
if (0 != (swSerialConfig & 070))
avail = serialIUT.available();
else
avail = serialIUT.read(inBuf, BLOCKSIZE);
for (int i = 0; i < avail; ++i)
{
unsigned char r;
if (0 != (swSerialConfig & 070))
r = serialIUT.read();
else
r = inBuf[i];
if (expected == -1) { expected = r; }
else {
expected = (expected + 1) % (1UL << (5 + swSerialConfig % 4));
}
if (r != expected) {
++rxErrors;
expected = -1;
}
#ifndef HWSOURCESINK
if (serialIUT.readParity() != (static_cast<bool>(swSerialConfig & 010) ? serialIUT.parityOdd(r) : serialIUT.parityEven(r)))
{
++rxParityErrors;
}
#elif defined(ESP8266)
// current ESP8266 API does not flag parity errors separately
if (serialIUT.hasRxError())
{
++rxParityErrors;
}
#endif
++rxCount;
++inCnt;
}
if (inCnt >= BLOCKSIZE) { break; }
// wait for more outstanding bytes to trickle in
if (avail) deadlineStart = ESP.getCycleCount();
}
const uint32_t interval = micros() - start;
if (txCount >= ReportInterval && interval) {
uint8_t wordBits = (5 + swSerialConfig % 4) + static_cast<bool>(swSerialConfig & 070) + 1 + ((swSerialConfig & 0300) ? 1 : 0);
logger.println(String(PSTR("tx/rx: ")) + txCount + PSTR("/") + rxCount);
const long txCps = txCount * (1000000.0 / interval);
const long rxCps = rxCount * (1000000.0 / interval);
logger.print(String(FPSTR(effTxTxt)) + wordBits * txCps + PSTR("bps, ")
+ effRxTxt + wordBits * rxCps + PSTR("bps, ")
+ rxErrors + PSTR(" errors (") + 100.0 * rxErrors / (!rxErrors ? 1 : rxCount) + PSTR("%)"));
if (0 != (swSerialConfig & 070))
{
logger.print(PSTR(" (")); logger.print(rxParityErrors); logger.println(PSTR(" parity errors)"));
}
else
{
logger.println();
}
txCount = 0;
rxCount = 0;
rxErrors = 0;
rxParityErrors = 0;
expected = -1;
// resync
delay(1000UL * 12 * BLOCKSIZE / IUTBITRATE * 16);
serialIUT.flush();
start = micros();
}
}

@ -1,59 +0,0 @@
#include "SoftwareSerial.h"
#ifndef D5
#if defined(ESP8266)
#define D5 (14)
#define D6 (12)
#elif defined(ESP32)
#define D5 (18)
#define D6 (19)
#endif
#endif
EspSoftwareSerial::UART swSer1;
EspSoftwareSerial::UART swSer2;
void checkSwSerial(EspSoftwareSerial::UART* ss) {
byte ch;
while (!Serial.available());
ss->enableTx(true);
while (Serial.available()) {
ch = Serial.read();
ss->write(ch);
}
ss->enableTx(false);
// wait 1 second for the reply from EspSoftwareSerial if any
delay(1000);
if (ss->available()) {
Serial.print(PSTR("\nResult:"));
while (ss->available()) {
ch = (byte)ss->read();
Serial.print(ch < 0x10 ? PSTR(" 0") : PSTR(" "));
Serial.print(ch, HEX);
}
Serial.println();
}
}
void setup() {
delay(2000);
Serial.begin(115200);
Serial.println(PSTR("\nOne Wire Half Duplex Serial Tester"));
swSer1.begin(115200, EspSoftwareSerial::SWSERIAL_8N1, D6, D6, false, 256);
// high speed half duplex, turn off interrupts during tx
swSer1.enableIntTx(false);
swSer2.begin(115200, EspSoftwareSerial::SWSERIAL_8N1, D5, D5, false, 256);
// high speed half duplex, turn off interrupts during tx
swSer2.enableIntTx(false);
}
void loop() {
Serial.println(PSTR("\n\nTesting on swSer1"));
Serial.print(PSTR("Enter something to send using swSer1."));
checkSwSerial(&swSer1);
Serial.println(PSTR("\n\nTesting on swSer2"));
Serial.print(PSTR("Enter something to send using swSer2."));
checkSwSerial(&swSer2);
}

@ -1,80 +0,0 @@
// On ESP8266:
// Runs up to 115200bps at 80MHz, 250000bps at 160MHz, with nearly zero errors.
// This example is currently not ported to ESP32, which is based on FreeRTOS.
#include <SoftwareSerial.h>
#ifndef D5
#define D8 (15)
#define D5 (14)
#define D7 (13)
#define D6 (12)
#define RX (3)
#define TX (1)
#endif
#define BAUD_RATE 115200
#define MAX_FRAMEBITS (1 + 8 + 1 + 2)
EspSoftwareSerial::UART testSerial;
// Becomes set from ISR / IRQ callback function.
std::atomic<bool> rxPending(false);
void IRAM_ATTR receiveHandler() {
rxPending.store(true);
esp_schedule();
}
void setup() {
Serial.begin(115200);
Serial.setDebugOutput(false);
Serial.swap();
testSerial.begin(BAUD_RATE, EspSoftwareSerial::SWSERIAL_8N1, RX, TX);
// Only half duplex this way, but reliable TX timings for high bps
testSerial.enableIntTx(false);
testSerial.onReceive(receiveHandler);
testSerial.println(PSTR("\nSoftware serial onReceive() event test started"));
for (char ch = ' '; ch <= 'z'; ch++) {
testSerial.write(ch);
}
testSerial.println();
}
void loop() {
#ifdef ESP8266
bool isRxPending = rxPending.load();
if (isRxPending) {
rxPending.store(false);
}
#else
bool isRxPending = m_isrOverflow.exchange(false);
#endif
auto avail = testSerial.available();
if (isRxPending && !avail) {
// event fired on start bit, wait until first stop bit of longest frame
delayMicroseconds(1 + MAX_FRAMEBITS * 1000000 / BAUD_RATE);
avail = testSerial.available();
}
if (!avail) {
// On development board, idle power draw at USB:
// with yield() 77mA, 385mW (160MHz: 82mA, 410mW)
// with esp_suspend() 20mA, 100mW (at 160MHz, too)
//yield();
esp_suspend();
return;
}
// try to force to half-duplex
decltype(avail) prev_avail;
do {
delayMicroseconds(1 + MAX_FRAMEBITS * 1000000 / BAUD_RATE);
prev_avail = avail;
} while (prev_avail != (avail = testSerial.available()));
while (avail > 0) {
testSerial.write(testSerial.read());
avail = testSerial.available();
}
testSerial.println();
}

@ -1,199 +0,0 @@
#include <SoftwareSerial.h>
// On ESP8266:
// EspSoftwareSerial loopback for remote source (loopback.ino), or hardware loopback.
// Connect source D5 (rx) to local D8 (tx), source D6 (tx) to local D7 (rx).
// Hint: The logger is run at 9600bps such that enableIntTx(true) can remain unchanged. Blocking
// interrupts severely impacts the ability of the EspSoftwareSerial devices to operate concurrently
// and/or in duplex mode.
// On ESP32:
// For software or hardware loopback, connect source rx to local D8 (tx), source tx to local D7 (rx).
#ifndef D5
#if defined(ESP8266)
#define D8 (15)
#define D5 (14)
#define D7 (13)
#define D6 (12)
#define RX (3)
#define TX (1)
#elif defined(ESP32)
#define D8 (5)
#define D5 (18)
#define D7 (23)
#define D6 (19)
#define RX (3)
#define TX (1)
#endif
#endif
#define HWLOOPBACK 1
#define HALFDUPLEX 1
#ifdef ESP32
constexpr int IUTBITRATE = 19200;
#else
constexpr int IUTBITRATE = 19200;
#endif
#if defined(ESP8266)
constexpr EspSoftwareSerial::Config swSerialConfig = EspSoftwareSerial::SWSERIAL_8E1;
constexpr SerialConfig hwSerialConfig = ::SERIAL_8E1;
#elif defined(ESP32)
constexpr EspSoftwareSerial::Config swSerialConfig = EspSoftwareSerial::SWSERIAL_8E1;
constexpr uint32_t hwSerialConfig = ::SERIAL_8E1;
#else
constexpr unsigned swSerialConfig = 3;
#endif
constexpr bool invert = false;
constexpr int BLOCKSIZE = 16; // use fractions of 256
unsigned long start;
const char bitRateTxt[] PROGMEM = "Effective data rate: ";
int rxCount;
int seqErrors;
int parityErrors;
int expected;
constexpr int ReportInterval = IUTBITRATE / 8;
#if defined(ESP8266)
#if defined(HWLOOPBACK)
HardwareSerial& repeater(Serial);
EspSoftwareSerial::UART logger;
#else
EspSoftwareSerial::UART repeater;
HardwareSerial& logger(Serial);
#endif
#elif defined(ESP32)
#if defined(HWLOOPBACK)
HardwareSerial& repeater(Serial2);
#else
EspSoftwareSerial::UART repeater;
#endif
HardwareSerial& logger(Serial);
#else
EspSoftwareSerial::UART repeater(14, 12);
HardwareSerial& logger(Serial);
#endif
void setup() {
#if defined(ESP8266)
#if defined(HWLOOPBACK)
repeater.begin(IUTBITRATE, hwSerialConfig, ::SERIAL_FULL, 1, invert);
repeater.swap();
repeater.setRxBufferSize(2 * BLOCKSIZE);
logger.begin(9600, EspSoftwareSerial::SWSERIAL_8N1, -1, TX);
#else
repeater.begin(IUTBITRATE, swSerialConfig, D7, D8, invert, 4 * BLOCKSIZE);
#ifdef HALFDUPLEX
repeater.enableIntTx(false);
#endif
logger.begin(9600);
#endif
#elif defined(ESP32)
#if defined(HWLOOPBACK)
repeater.begin(IUTBITRATE, hwSerialConfig, D7, D8, invert);
repeater.setRxBufferSize(2 * BLOCKSIZE);
#else
repeater.begin(IUTBITRATE, swSerialConfig, D7, D8, invert, 4 * BLOCKSIZE);
#ifdef HALFDUPLEX
repeater.enableIntTx(false);
#endif
#endif
logger.begin(9600);
#else
repeater.begin(IUTBITRATE);
logger.begin(9600);
#endif
logger.println(PSTR("Repeater example for EspEspSoftwareSerial"));
start = micros();
rxCount = 0;
seqErrors = 0;
parityErrors = 0;
expected = -1;
}
void loop() {
#ifdef HWLOOPBACK
#if defined(ESP8266)
if (repeater.hasOverrun()) { logger.println(PSTR("repeater.overrun")); }
#endif
#else
if (repeater.overflow()) { logger.println(PSTR("repeater.overflow")); }
#endif
#ifdef HALFDUPLEX
char block[BLOCKSIZE];
#endif
// starting deadline for the first bytes to come in
uint32_t deadlineStart = ESP.getCycleCount();
int inCnt = 0;
while ((ESP.getCycleCount() - deadlineStart) < (1000000UL * 12 * BLOCKSIZE) / IUTBITRATE * 24 * ESP.getCpuFreqMHz()) {
int avail = repeater.available();
for (int i = 0; i < avail; ++i)
{
int r = repeater.read();
if (r == -1) { logger.println(PSTR("read() == -1")); }
if (expected == -1) { expected = r; }
else {
expected = (expected + 1) % (1UL << (5 + swSerialConfig % 4));
}
if (r != expected) {
++seqErrors;
expected = -1;
}
#ifndef HWLOOPBACK
if (repeater.readParity() != (static_cast<bool>(swSerialConfig & 010) ? repeater.parityOdd(r) : repeater.parityEven(r)))
{
++parityErrors;
}
#elif defined(ESP8266)
// current ESP8266 API does not flag parity errors separately
if (repeater.hasRxError())
{
++parityErrors;
}
#endif
++rxCount;
#ifdef HALFDUPLEX
block[inCnt] = r;
#else
repeater.write(r);
#endif
if (++inCnt >= BLOCKSIZE) { break; }
}
if (inCnt >= BLOCKSIZE) { break; }
// wait for more outstanding bytes to trickle in
if (avail) deadlineStart = ESP.getCycleCount();
}
#ifdef HALFDUPLEX
repeater.write(block, inCnt);
#endif
if (rxCount >= ReportInterval) {
auto end = micros();
unsigned long interval = end - start;
long cps = rxCount * (1000000.0 / interval);
long seqErrorsps = seqErrors * (1000000.0 / interval);
logger.print(String(FPSTR(bitRateTxt)) + 10 * cps + PSTR("bps, ")
+ seqErrorsps + PSTR("cps seq. errors (") + 100.0 * seqErrors / rxCount + PSTR("%)"));
#ifndef HWLOOPBACK
if (0 != (swSerialConfig & 070))
{
logger.print(PSTR(" (")); logger.print(parityErrors); logger.println(PSTR(" parity errors)"));
}
else
#endif
{
logger.println();
}
start = end;
rxCount = 0;
seqErrors = 0;
parityErrors = 0;
expected = -1;
}
}

@ -1,79 +0,0 @@
// On ESP8266:
// At 80MHz runs up 57600bps, and at 160MHz CPU frequency up to 115200bps with only negligible errors.
// Connect pin 13 to 15.
// For verification and as a example for how to use SW serial on the USB to PC connection,
// which allows the use of HW Serial on GPIO13 and GPIO15 instead, #define SWAPSERIAL below.
// Notice how the bitrates are also swapped then between RX/TX and GPIO13/GPIO15.
// Builtin debug output etc. must be stopped on HW Serial in this case, as it would interfere with the
// external communication on GPIO13/GPIO15.
#include <SoftwareSerial.h>
#ifndef D5
#if defined(ESP8266)
#define D8 (15)
#define D5 (14)
#define D7 (13)
#define D6 (12)
#define RX (3)
#define TX (1)
#elif defined(ESP32)
#define D8 (5)
#define D5 (18)
#define D7 (23)
#define D6 (19)
#define RX (3)
#define TX (1)
#endif
#endif
#ifdef ESP32
#define BAUD_RATE 57600
#else
#define BAUD_RATE 57600
#endif
#undef SWAPSERIAL
#ifndef SWAPSERIAL
auto& usbSerial = Serial;
EspSoftwareSerial::UART testSerial;
#else
EspSoftwareSerial::UART usbSerial;
auto& testSerial = Serial;
#endif
void setup() {
#ifndef SWAPSERIAL
usbSerial.begin(115200);
// Important: the buffer size optimizations here, in particular the isrBufSize (11) that is only sufficiently
// large to hold a single word (up to start - 8 data - parity - stop), are on the basis that any char written
// to the loopback EspSoftwareSerial adapter gets read before another write is performed.
// Block writes with a size greater than 1 would usually fail. Do not copy this into your own project without
// reading the documentation.
testSerial.begin(BAUD_RATE, EspSoftwareSerial::SWSERIAL_8N1, D7, D8, false, 95, 11);
#else
testSerial.begin(115200);
testSerial.setDebugOutput(false);
testSerial.swap();
usbSerial.begin(BAUD_RATE, EspSoftwareSerial::SWSERIAL_8N1, RX, TX, false, 95);
#endif
usbSerial.println(PSTR("\nSoftware serial test started"));
for (char ch = ' '; ch <= 'z'; ch++) {
testSerial.write(ch);
}
testSerial.println();
}
void loop() {
while (testSerial.available() > 0) {
usbSerial.write(testSerial.read());
yield();
}
while (usbSerial.available() > 0) {
testSerial.write(usbSerial.read());
yield();
}
}

@ -1,43 +0,0 @@
#######################################
# Syntax Coloring Map for EspSoftwareSerial
# (esp8266)
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
EspSoftwareSerial KEYWORD1
SoftwareSerial KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
begin KEYWORD2
baudRate KEYWORD2
setTransmitEnablePin KEYWORD2
enableIntTx KEYWORD2
overflow KEYWORD2
available KEYWORD2
peek KEYWORD2
read KEYWORD2
flush KEYWORD2
write KEYWORD2
enableRx KEYWORD2
enableTx KEYWORD2
listen KEYWORD2
end KEYWORD2
isListening KEYWORD2
stopListening KEYWORD2
onReceive KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################
SW_SERIAL_UNUSED_PIN LITERAL1
SWSERIAL_5N1 LITERAL1
SWSERIAL_6N1 LITERAL1
SWSERIAL_7N1 LITERAL1
SWSERIAL_8N1 LITERAL1

@ -1,26 +0,0 @@
{
"name": "EspSoftwareSerial",
"version": "8.1.0",
"description": "Implementation of the Arduino software serial for ESP8266/ESP32.",
"keywords": [
"serial", "io", "softwareserial"
],
"repository":
{
"type": "git",
"url": "https://github.com/plerup/espsoftwareserial"
},
"authors": [
{
"name": "Dirk Kaar"
},
{
"name": "Peter Lerup"
}
],
"license": "LGPL-2.1+",
"frameworks": "arduino",
"platforms": [
"espressif8266", "espressif32"
]
}

@ -1,9 +0,0 @@
name=EspSoftwareSerial
version=8.1.0
author=Dirk Kaar, Peter Lerup
maintainer=Dirk Kaar <dok@dok-net.net>
sentence=Implementation of the Arduino software serial for ESP8266/ESP32.
paragraph=
category=Signal Input/Output
url=https://github.com/plerup/espsoftwareserial/
architectures=esp8266,esp32

@ -1,621 +0,0 @@
/*
SoftwareSerial.cpp - Implementation of the Arduino software serial for ESP8266/ESP32.
Copyright (c) 2015-2016 Peter Lerup. All rights reserved.
Copyright (c) 2018-2019 Dirk O. Kaar. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "SoftwareSerial.h"
#include <Arduino.h>
using namespace EspSoftwareSerial;
#ifndef ESP32
uint32_t UARTBase::m_savedPS = 0;
#else
portMUX_TYPE UARTBase::m_interruptsMux = portMUX_INITIALIZER_UNLOCKED;
#endif
ALWAYS_INLINE_ATTR inline void IRAM_ATTR UARTBase::disableInterrupts()
{
#ifndef ESP32
m_savedPS = xt_rsil(15);
#else
taskENTER_CRITICAL(&m_interruptsMux);
#endif
}
ALWAYS_INLINE_ATTR inline void IRAM_ATTR UARTBase::restoreInterrupts()
{
#ifndef ESP32
xt_wsr_ps(m_savedPS);
#else
taskEXIT_CRITICAL(&m_interruptsMux);
#endif
}
constexpr uint8_t BYTE_ALL_BITS_SET = ~static_cast<uint8_t>(0);
UARTBase::UARTBase() {
}
UARTBase::UARTBase(int8_t rxPin, int8_t txPin, bool invert)
{
m_rxPin = rxPin;
m_txPin = txPin;
m_invert = invert;
}
UARTBase::~UARTBase() {
end();
}
void UARTBase::setRxGPIOPinMode() {
if (m_rxValid) {
pinMode(m_rxPin, m_rxGPIOHasPullUp && m_rxGPIOPullUpEnabled ? INPUT_PULLUP : INPUT);
}
}
void UARTBase::setTxGPIOPinMode() {
if (m_txValid) {
pinMode(m_txPin, m_txGPIOOpenDrain ? OUTPUT_OPEN_DRAIN : OUTPUT);
}
}
void UARTBase::begin(uint32_t baud, Config config,
int8_t rxPin, int8_t txPin,
bool invert) {
if (-1 != rxPin) m_rxPin = rxPin;
if (-1 != txPin) m_txPin = txPin;
m_oneWire = (m_rxPin == m_txPin);
m_invert = invert;
m_dataBits = 5 + (config & 07);
m_parityMode = static_cast<Parity>(config & 070);
m_stopBits = 1 + ((config & 0300) ? 1 : 0);
m_pduBits = m_dataBits + static_cast<bool>(m_parityMode) + m_stopBits;
m_bitTicks = (microsToTicks(1000000UL) + baud / 2) / baud;
m_intTxEnabled = true;
}
void UARTBase::beginRx(bool hasPullUp, int bufCapacity, int isrBufCapacity) {
m_rxGPIOHasPullUp = hasPullUp;
m_rxReg = portInputRegister(digitalPinToPort(m_rxPin));
m_rxBitMask = digitalPinToBitMask(m_rxPin);
m_buffer.reset(new circular_queue<uint8_t>((bufCapacity > 0) ? bufCapacity : 64));
if (m_parityMode)
{
m_parityBuffer.reset(new circular_queue<uint8_t>((m_buffer->capacity() + 7) / 8));
m_parityInPos = m_parityOutPos = 1;
}
m_isrBuffer.reset(new circular_queue<uint32_t, UARTBase*>((isrBufCapacity > 0) ?
isrBufCapacity : m_buffer->capacity() * (2 + m_dataBits + static_cast<bool>(m_parityMode))));
if (m_buffer && (!m_parityMode || m_parityBuffer) && m_isrBuffer) {
m_rxValid = true;
setRxGPIOPinMode();
}
}
void UARTBase::beginTx() {
#if !defined(ESP8266)
m_txReg = portOutputRegister(digitalPinToPort(m_txPin));
#endif
m_txBitMask = digitalPinToBitMask(m_txPin);
m_txValid = true;
if (!m_oneWire) {
setTxGPIOPinMode();
digitalWrite(m_txPin, !m_invert);
}
}
void UARTBase::end()
{
enableRx(false);
m_txValid = false;
if (m_buffer) {
m_buffer.reset();
}
m_parityBuffer.reset();
if (m_isrBuffer) {
m_isrBuffer.reset();
}
}
uint32_t UARTBase::baudRate() {
return 1000000UL / ticksToMicros(m_bitTicks);
}
void UARTBase::setTransmitEnablePin(int8_t txEnablePin) {
if (-1 != txEnablePin) {
m_txEnableValid = true;
m_txEnablePin = txEnablePin;
pinMode(m_txEnablePin, OUTPUT);
digitalWrite(m_txEnablePin, LOW);
}
else {
m_txEnableValid = false;
}
}
void UARTBase::enableIntTx(bool on) {
m_intTxEnabled = on;
}
void UARTBase::enableRxGPIOPullUp(bool on) {
m_rxGPIOPullUpEnabled = on;
setRxGPIOPinMode();
}
void UARTBase::enableTxGPIOOpenDrain(bool on) {
m_txGPIOOpenDrain = on;
setTxGPIOPinMode();
}
void UARTBase::enableTx(bool on) {
if (m_txValid && m_oneWire) {
if (on) {
enableRx(false);
setTxGPIOPinMode();
digitalWrite(m_txPin, !m_invert);
}
else {
setRxGPIOPinMode();
enableRx(true);
}
}
}
void UARTBase::enableRx(bool on) {
if (m_rxValid && on != m_rxEnabled) {
if (on) {
m_rxLastBit = m_pduBits - 1;
// Init to stop bit level and current tick
m_isrLastTick = (microsToTicks(micros()) | 1) ^ m_invert;
if (m_bitTicks >= microsToTicks(1000000UL / 74880UL))
attachInterruptArg(digitalPinToInterrupt(m_rxPin), reinterpret_cast<void (*)(void*)>(rxBitISR), this, CHANGE);
else
attachInterruptArg(digitalPinToInterrupt(m_rxPin), reinterpret_cast<void (*)(void*)>(rxBitSyncISR), this, m_invert ? RISING : FALLING);
}
else {
detachInterrupt(digitalPinToInterrupt(m_rxPin));
}
m_rxEnabled = on;
}
}
int UARTBase::read() {
if (!m_rxValid) { return -1; }
if (!m_buffer->available()) {
rxBits();
if (!m_buffer->available()) { return -1; }
}
auto val = m_buffer->pop();
if (m_parityBuffer)
{
m_lastReadParity = m_parityBuffer->peek() & m_parityOutPos;
m_parityOutPos <<= 1;
if (!m_parityOutPos)
{
m_parityOutPos = 1;
m_parityBuffer->pop();
}
}
return val;
}
int UARTBase::read(uint8_t* buffer, size_t size) {
if (!m_rxValid) { return 0; }
int avail;
if (0 == (avail = m_buffer->pop_n(buffer, size))) {
rxBits();
avail = m_buffer->pop_n(buffer, size);
}
if (!avail) return 0;
if (m_parityBuffer) {
uint32_t parityBits = avail;
while (m_parityOutPos >>= 1) ++parityBits;
m_parityOutPos = (1 << (parityBits % 8));
m_parityBuffer->pop_n(nullptr, parityBits / 8);
}
return avail;
}
size_t UARTBase::readBytes(uint8_t* buffer, size_t size) {
if (!m_rxValid || !size) { return 0; }
size_t count = 0;
auto start = millis();
do {
auto readCnt = read(&buffer[count], size - count);
count += readCnt;
if (count >= size) break;
if (readCnt) {
start = millis();
}
else {
optimistic_yield(1000UL);
}
} while (millis() - start < _timeout);
return count;
}
int UARTBase::available() {
if (!m_rxValid) { return 0; }
rxBits();
int avail = m_buffer->available();
if (!avail) {
optimistic_yield(10000UL);
}
return avail;
}
void UARTBase::lazyDelay() {
// Reenable interrupts while delaying to avoid other tasks piling up
if (!m_intTxEnabled) { restoreInterrupts(); }
const auto expired = microsToTicks(micros()) - m_periodStart;
const int32_t remaining = m_periodDuration - expired;
const uint32_t ms = remaining > 0 ? ticksToMicros(remaining) / 1000UL : 0;
if (ms > 0)
{
delay(ms);
}
else
{
optimistic_yield(10000UL);
}
// Assure that below-ms part of delays are not elided
preciseDelay();
// Disable interrupts again if applicable
if (!m_intTxEnabled) { disableInterrupts(); }
}
void IRAM_ATTR UARTBase::preciseDelay() {
uint32_t ticks;
do {
ticks = microsToTicks(micros());
} while ((ticks - m_periodStart) < m_periodDuration);
m_periodDuration = 0;
m_periodStart = ticks;
}
void IRAM_ATTR UARTBase::writePeriod(
uint32_t dutyCycle, uint32_t offCycle, bool withStopBit) {
preciseDelay();
if (dutyCycle)
{
#if defined(ESP8266)
if (16 == m_txPin) {
GP16O = 1;
}
else {
GPOS = m_txBitMask;
}
#else
*m_txReg = *m_txReg | m_txBitMask;
#endif
m_periodDuration += dutyCycle;
if (offCycle || (withStopBit && !m_invert)) {
if (!withStopBit || m_invert) {
preciseDelay();
}
else {
lazyDelay();
}
}
}
if (offCycle)
{
#if defined(ESP8266)
if (16 == m_txPin) {
GP16O = 0;
}
else {
GPOC = m_txBitMask;
}
#else
*m_txReg = *m_txReg & ~m_txBitMask;
#endif
m_periodDuration += offCycle;
if (withStopBit && m_invert) lazyDelay();
}
}
size_t UARTBase::write(uint8_t byte) {
return write(&byte, 1);
}
size_t UARTBase::write(uint8_t byte, Parity parity) {
return write(&byte, 1, parity);
}
size_t UARTBase::write(const uint8_t* buffer, size_t size) {
return write(buffer, size, m_parityMode);
}
size_t IRAM_ATTR UARTBase::write(const uint8_t* buffer, size_t size, Parity parity) {
if (m_rxValid) { rxBits(); }
if (!m_txValid) { return -1; }
if (m_txEnableValid) {
digitalWrite(m_txEnablePin, HIGH);
}
// Stop bit: if inverted, LOW, otherwise HIGH
bool b = !m_invert;
uint32_t dutyCycle = 0;
uint32_t offCycle = 0;
if (!m_intTxEnabled) {
// Disable interrupts in order to get a clean transmit timing
disableInterrupts();
}
const uint32_t dataMask = ((1UL << m_dataBits) - 1);
bool withStopBit = true;
m_periodDuration = 0;
m_periodStart = microsToTicks(micros());
for (size_t cnt = 0; cnt < size; ++cnt) {
uint8_t byte = pgm_read_byte(buffer + cnt) & dataMask;
// push LSB start-data-parity-stop bit pattern into uint32_t
// Stop bits: HIGH
uint32_t word = ~0UL;
// inverted parity bit, performance tweak for xor all-bits-set word
if (parity && m_parityMode)
{
uint32_t parityBit;
switch (parity)
{
case PARITY_EVEN:
// from inverted, so use odd parity
parityBit = byte;
parityBit ^= parityBit >> 4;
parityBit &= 0xf;
parityBit = (0x9669 >> parityBit) & 1;
break;
case PARITY_ODD:
// from inverted, so use even parity
parityBit = byte;
parityBit ^= parityBit >> 4;
parityBit &= 0xf;
parityBit = (0x6996 >> parityBit) & 1;
break;
case PARITY_MARK:
parityBit = 0;
break;
case PARITY_SPACE:
// suppresses warning parityBit uninitialized
default:
parityBit = 1;
break;
}
word ^= parityBit;
}
word <<= m_dataBits;
word |= byte;
// Start bit: LOW
word <<= 1;
if (m_invert) word = ~word;
for (int i = 0; i <= m_pduBits; ++i) {
bool pb = b;
b = word & (1UL << i);
if (!pb && b) {
writePeriod(dutyCycle, offCycle, withStopBit);
withStopBit = false;
dutyCycle = offCycle = 0;
}
if (b) {
dutyCycle += m_bitTicks;
}
else {
offCycle += m_bitTicks;
}
}
withStopBit = true;
}
writePeriod(dutyCycle, offCycle, true);
if (!m_intTxEnabled) {
// restore the interrupt state if applicable
restoreInterrupts();
}
if (m_txEnableValid) {
digitalWrite(m_txEnablePin, LOW);
}
return size;
}
void UARTBase::flush() {
if (!m_rxValid) { return; }
m_buffer->flush();
if (m_parityBuffer)
{
m_parityInPos = m_parityOutPos = 1;
m_parityBuffer->flush();
}
}
bool UARTBase::overflow() {
bool res = m_overflow;
m_overflow = false;
return res;
}
int UARTBase::peek() {
if (!m_rxValid) { return -1; }
if (!m_buffer->available()) {
rxBits();
if (!m_buffer->available()) return -1;
}
auto val = m_buffer->peek();
if (m_parityBuffer) m_lastReadParity = m_parityBuffer->peek() & m_parityOutPos;
return val;
}
void UARTBase::rxBits() {
#ifdef ESP8266
if (m_isrOverflow.load()) {
m_overflow = true;
m_isrOverflow.store(false);
}
#else
if (m_isrOverflow.exchange(false)) {
m_overflow = true;
}
#endif
m_isrBuffer->for_each(m_isrBufferForEachDel);
// A stop bit can go undetected if leading data bits are at same level
// and there was also no next start bit yet, so one word may be pending.
// Check that there was no new ISR data received in the meantime, inserting an
// extraneous stop level bit out of sequence breaks rx.
if (m_rxLastBit < m_pduBits - 1) {
const uint32_t detectionTicks = (m_pduBits - 1 - m_rxLastBit) * m_bitTicks;
if (!m_isrBuffer->available() && microsToTicks(micros()) - m_isrLastTick > detectionTicks) {
// Produce faux stop bit level, prevents start bit maldetection
// tick's LSB is repurposed for the level bit
rxBits(((m_isrLastTick + detectionTicks) | 1) ^ m_invert);
}
}
}
void UARTBase::rxBits(const uint32_t isrTick) {
const bool level = (m_isrLastTick & 1) ^ m_invert;
// error introduced by edge value in LSB of isrTick is negligible
uint32_t ticks = isrTick - m_isrLastTick;
m_isrLastTick = isrTick;
uint32_t bits = ticks / m_bitTicks;
if (ticks % m_bitTicks > (m_bitTicks >> 1)) ++bits;
while (bits > 0) {
// start bit detection
if (m_rxLastBit >= (m_pduBits - 1)) {
// leading edge of start bit?
if (level) break;
m_rxLastBit = -1;
--bits;
continue;
}
// data bits
if (m_rxLastBit < (m_dataBits - 1)) {
uint8_t dataBits = min(bits, static_cast<uint32_t>(m_dataBits - 1 - m_rxLastBit));
m_rxLastBit += dataBits;
bits -= dataBits;
m_rxCurByte >>= dataBits;
if (level) { m_rxCurByte |= (BYTE_ALL_BITS_SET << (8 - dataBits)); }
continue;
}
// parity bit
if (m_parityMode && m_rxLastBit == (m_dataBits - 1)) {
++m_rxLastBit;
--bits;
m_rxCurParity = level;
continue;
}
// stop bits
// Store the received value in the buffer unless we have an overflow
// if not high stop bit level, discard word
if (bits >= static_cast<uint32_t>(m_pduBits - 1 - m_rxLastBit) && level) {
m_rxCurByte >>= (sizeof(uint8_t) * 8 - m_dataBits);
if (!m_buffer->push(m_rxCurByte)) {
m_overflow = true;
}
else {
if (m_parityBuffer)
{
if (m_rxCurParity) {
m_parityBuffer->pushpeek() |= m_parityInPos;
}
else {
m_parityBuffer->pushpeek() &= ~m_parityInPos;
}
m_parityInPos <<= 1;
if (!m_parityInPos)
{
m_parityBuffer->push();
m_parityInPos = 1;
}
}
}
}
m_rxLastBit = m_pduBits - 1;
// reset to 0 is important for masked bit logic
m_rxCurByte = 0;
m_rxCurParity = false;
break;
}
}
void IRAM_ATTR UARTBase::rxBitISR(UARTBase* self) {
const bool level = *self->m_rxReg & self->m_rxBitMask;
const uint32_t curTick = microsToTicks(micros());
const bool empty = !self->m_isrBuffer->available();
// Store level and tick in the buffer unless we have an overflow
// tick's LSB is repurposed for the level bit
if (!self->m_isrBuffer->push((curTick | 1U) ^ !level)) self->m_isrOverflow.store(true);
// Trigger rx callback only when receiver is starved
if (empty) self->m_rxHandler();
}
void IRAM_ATTR UARTBase::rxBitSyncISR(UARTBase* self) {
bool level = self->m_invert;
const uint32_t start = microsToTicks(micros());
uint32_t wait = self->m_bitTicks;
const bool empty = !self->m_isrBuffer->available();
// Store level and tick in the buffer unless we have an overflow
// tick's LSB is repurposed for the level bit
if (!self->m_isrBuffer->push(((start + wait) | 1U) ^ !level)) self->m_isrOverflow.store(true);
for (uint32_t i = 0; i < self->m_pduBits; ++i) {
while (microsToTicks(micros()) - start < wait) {};
wait += self->m_bitTicks;
// Store level and tick in the buffer unless we have an overflow
// tick's LSB is repurposed for the level bit
if (static_cast<bool>(*self->m_rxReg & self->m_rxBitMask) != level)
{
if (!self->m_isrBuffer->push(((start + wait) | 1U) ^ level)) self->m_isrOverflow.store(true);
level = !level;
}
}
// Trigger rx callback only when receiver is starved
if (empty) self->m_rxHandler();
}
void UARTBase::onReceive(const Delegate<void(), void*>& handler) {
disableInterrupts();
m_rxHandler = handler;
restoreInterrupts();
}
void UARTBase::onReceive(Delegate<void(), void*>&& handler) {
disableInterrupts();
m_rxHandler = std::move(handler);
restoreInterrupts();
}
#if __GNUC__ < 12
// The template member functions below must be in IRAM, but due to a bug GCC doesn't currently
// honor the attribute. Instead, it is possible to do explicit specialization and adorn
// these with the IRAM attribute:
// Delegate<>::operator (), circular_queue<>::available,
// circular_queue<>::available_for_push, circular_queue<>::push_peek, circular_queue<>::push
template void IRAM_ATTR delegate::detail::DelegateImpl<void*, void>::operator()() const;
template size_t IRAM_ATTR circular_queue<uint32_t, UARTBase*>::available() const;
template bool IRAM_ATTR circular_queue<uint32_t, UARTBase*>::push(uint32_t&&);
template bool IRAM_ATTR circular_queue<uint32_t, UARTBase*>::push(const uint32_t&);
#endif // __GNUC__ < 12

@ -1,449 +0,0 @@
/*
SoftwareSerial.h - Implementation of the Arduino software serial for ESP8266/ESP32.
Copyright (c) 2015-2016 Peter Lerup. All rights reserved.
Copyright (c) 2018-2019 Dirk O. Kaar. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __SoftwareSerial_h
#define __SoftwareSerial_h
#include "circular_queue/circular_queue.h"
#include <Stream.h>
namespace EspSoftwareSerial {
// Interface definition for template argument of BasicUART
class IGpioCapabilities {
public:
static constexpr bool isValidPin(int8_t pin);
static constexpr bool isValidInputPin(int8_t pin);
static constexpr bool isValidOutputPin(int8_t pin);
// result is only defined for a valid Rx pin
static constexpr bool hasPullUp(int8_t pin);
};
class GpioCapabilities : private IGpioCapabilities {
public:
static constexpr bool isValidPin(int8_t pin) {
#if defined(ESP8266)
return (pin >= 0 && pin <= 16) && !isFlashInterfacePin(pin);
#elif defined(ESP32)
// Remove the strapping pins as defined in the datasheets, they affect bootup and other critical operations
// Remmove the flash memory pins on related devices, since using these causes memory access issues.
#ifdef CONFIG_IDF_TARGET_ESP32
// Datasheet https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf,
// Pinout https://docs.espressif.com/projects/esp-idf/en/latest/esp32/_images/esp32-devkitC-v4-pinout.jpg
return (pin == 1) || (pin >= 3 && pin <= 5) ||
(pin >= 12 && pin <= 15) ||
(!psramFound() && pin >= 16 && pin <= 17) ||
(pin >= 18 && pin <= 19) ||
(pin >= 21 && pin <= 23) || (pin >= 25 && pin <= 27) || (pin >= 32 && pin <= 39);
#elif CONFIG_IDF_TARGET_ESP32S2
// Datasheet https://www.espressif.com/sites/default/files/documentation/esp32-s2_datasheet_en.pdf,
// Pinout https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/_images/esp32-s2_saola1-pinout.jpg
return (pin >= 1 && pin <= 21) || (pin >= 33 && pin <= 44);
#elif CONFIG_IDF_TARGET_ESP32C3
// Datasheet https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf,
// Pinout https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/_images/esp32-c3-devkitm-1-v1-pinout.jpg
return (pin >= 0 && pin <= 1) || (pin >= 3 && pin <= 7) || (pin >= 18 && pin <= 21);
#else
return pin >= 0;
#endif
#else
return pin >= 0;
#endif
}
static constexpr bool isValidInputPin(int8_t pin) {
return isValidPin(pin)
#if defined(ESP8266)
&& (pin != 16)
#endif
;
}
static constexpr bool isValidOutputPin(int8_t pin) {
return isValidPin(pin)
#if defined(ESP32)
#ifdef CONFIG_IDF_TARGET_ESP32
&& (pin < 34)
#elif CONFIG_IDF_TARGET_ESP32S2
&& (pin <= 45)
#elif CONFIG_IDF_TARGET_ESP32C3
// no restrictions
#endif
#endif
;
}
// result is only defined for a valid Rx pin
static constexpr bool hasPullUp(int8_t pin) {
#if defined(ESP32)
return !(pin >= 34 && pin <= 39);
#else
(void)pin;
return true;
#endif
}
};
enum Parity : uint8_t {
PARITY_NONE = 000,
PARITY_EVEN = 020,
PARITY_ODD = 030,
PARITY_MARK = 040,
PARITY_SPACE = 070,
};
enum Config {
SWSERIAL_5N1 = PARITY_NONE,
SWSERIAL_6N1,
SWSERIAL_7N1,
SWSERIAL_8N1,
SWSERIAL_5E1 = PARITY_EVEN,
SWSERIAL_6E1,
SWSERIAL_7E1,
SWSERIAL_8E1,
SWSERIAL_5O1 = PARITY_ODD,
SWSERIAL_6O1,
SWSERIAL_7O1,
SWSERIAL_8O1,
SWSERIAL_5M1 = PARITY_MARK,
SWSERIAL_6M1,
SWSERIAL_7M1,
SWSERIAL_8M1,
SWSERIAL_5S1 = PARITY_SPACE,
SWSERIAL_6S1,
SWSERIAL_7S1,
SWSERIAL_8S1,
SWSERIAL_5N2 = 0200 | PARITY_NONE,
SWSERIAL_6N2,
SWSERIAL_7N2,
SWSERIAL_8N2,
SWSERIAL_5E2 = 0200 | PARITY_EVEN,
SWSERIAL_6E2,
SWSERIAL_7E2,
SWSERIAL_8E2,
SWSERIAL_5O2 = 0200 | PARITY_ODD,
SWSERIAL_6O2,
SWSERIAL_7O2,
SWSERIAL_8O2,
SWSERIAL_5M2 = 0200 | PARITY_MARK,
SWSERIAL_6M2,
SWSERIAL_7M2,
SWSERIAL_8M2,
SWSERIAL_5S2 = 0200 | PARITY_SPACE,
SWSERIAL_6S2,
SWSERIAL_7S2,
SWSERIAL_8S2,
};
/// This class is compatible with the corresponding AVR one, however,
/// the constructor takes no arguments, for compatibility with the
/// HardwareSerial class.
/// Instead, the begin() function handles pin assignments and logic inversion.
/// It also has optional input buffer capacity arguments for byte buffer and ISR bit buffer.
/// Bitrates up to at least 115200 can be used.
class UARTBase : public Stream {
public:
UARTBase();
/// Ctor to set defaults for pins.
/// @param rxPin the GPIO pin used for RX
/// @param txPin -1 for onewire protocol, GPIO pin used for twowire TX
UARTBase(int8_t rxPin, int8_t txPin = -1, bool invert = false);
UARTBase(const UARTBase&) = delete;
UARTBase& operator= (const UARTBase&) = delete;
virtual ~UARTBase();
/// Configure the UARTBase object for use.
/// @param baud the TX/RX bitrate
/// @param config sets databits, parity, and stop bit count
/// @param rxPin -1 or default: either no RX pin, or keeps the rxPin set in the ctor
/// @param txPin -1 or default: either no TX pin (onewire), or keeps the txPin set in the ctor
/// @param invert true: uses invert line level logic
/// @param bufCapacity the capacity for the received bytes buffer
/// @param isrBufCapacity 0: derived from bufCapacity. The capacity of the internal asynchronous
/// bit receive buffer, a suggested size is bufCapacity times the sum of
/// start, data, parity and stop bit count.
void begin(uint32_t baud, Config config,
int8_t rxPin, int8_t txPin, bool invert);
uint32_t baudRate();
/// Transmit control pin.
void setTransmitEnablePin(int8_t txEnablePin);
/// Enable (default) or disable interrupts during tx.
void enableIntTx(bool on);
/// Enable (default) or disable internal rx GPIO pull-up.
void enableRxGPIOPullUp(bool on);
/// Enable or disable (default) tx GPIO output mode.
void enableTxGPIOOpenDrain(bool on);
bool overflow();
int available() override;
#if defined(ESP8266)
int availableForWrite() override {
#else
int availableForWrite() {
#endif
if (!m_txValid) return 0;
return 1;
}
int peek() override;
int read() override;
/// @returns The verbatim parity bit associated with the last successful read() or peek() call
bool readParity()
{
return m_lastReadParity;
}
/// @returns The calculated bit for even parity of the parameter byte
static bool parityEven(uint8_t byte) {
byte ^= byte >> 4;
byte &= 0xf;
return (0x6996 >> byte) & 1;
}
/// @returns The calculated bit for odd parity of the parameter byte
static bool parityOdd(uint8_t byte) {
byte ^= byte >> 4;
byte &= 0xf;
return (0x9669 >> byte) & 1;
}
/// The read(buffer, size) functions are non-blocking, the same as readBytes but without timeout
int read(uint8_t* buffer, size_t size)
#if defined(ESP8266)
override
#endif
;
/// The read(buffer, size) functions are non-blocking, the same as readBytes but without timeout
int read(char* buffer, size_t size) {
return read(reinterpret_cast<uint8_t*>(buffer), size);
}
/// @returns The number of bytes read into buffer, up to size. Times out if the limit set through
/// Stream::setTimeout() is reached.
size_t readBytes(uint8_t* buffer, size_t size) override;
/// @returns The number of bytes read into buffer, up to size. Times out if the limit set through
/// Stream::setTimeout() is reached.
size_t readBytes(char* buffer, size_t size) override {
return readBytes(reinterpret_cast<uint8_t*>(buffer), size);
}
void flush() override;
size_t write(uint8_t byte) override;
size_t write(uint8_t byte, Parity parity);
size_t write(const uint8_t* buffer, size_t size) override;
size_t write(const char* buffer, size_t size) {
return write(reinterpret_cast<const uint8_t*>(buffer), size);
}
size_t write(const uint8_t* buffer, size_t size, Parity parity);
size_t write(const char* buffer, size_t size, Parity parity) {
return write(reinterpret_cast<const uint8_t*>(buffer), size, parity);
}
operator bool() const {
return (-1 == m_rxPin || m_rxValid) && (-1 == m_txPin || m_txValid) && !(-1 == m_rxPin && m_oneWire);
}
/// Disable or enable interrupts on the rx pin.
void enableRx(bool on);
/// One wire control.
void enableTx(bool on);
// AVR compatibility methods.
bool listen() { enableRx(true); return true; }
void end();
bool isListening() { return m_rxEnabled; }
bool stopListening() { enableRx(false); return true; }
/// onReceive sets a callback that will be called in interrupt context
/// when data is received.
/// More precisely, the callback is triggered when UARTBase detects
/// a new reception, which may not yet have completed on invocation.
/// Reading - never from this interrupt context - should therefore be
/// delayed at least for the duration of one incoming word.
void onReceive(const Delegate<void(), void*>& handler);
/// onReceive sets a callback that will be called in interrupt context
/// when data is received.
/// More precisely, the callback is triggered when UARTBase detects
/// a new reception, which may not yet have completed on invocation.
/// Reading - never from this interrupt context - should therefore be
/// delayed at least for the duration of one incoming word.
void onReceive(Delegate<void(), void*>&& handler);
[[deprecated("function removed; semantics of onReceive() changed; check the header file.")]]
void perform_work();
using Print::write;
protected:
void beginRx(bool hasPullUp, int bufCapacity, int isrBufCapacity);
void beginTx();
// Member variables
int8_t m_rxPin = -1;
int8_t m_txPin = -1;
bool m_invert = false;
private:
// It's legal to exceed the deadline, for instance,
// by enabling interrupts.
void lazyDelay();
// Synchronous precise delay
void preciseDelay();
// If withStopBit is set, either cycle contains a stop bit.
// If dutyCycle == 0, the level is not forced to HIGH.
// If offCycle == 0, the level remains unchanged from dutyCycle.
void writePeriod(
uint32_t dutyCycle, uint32_t offCycle, bool withStopBit);
// safely set the pin mode for the Rx GPIO pin
void setRxGPIOPinMode();
// safely set the pin mode for the Tx GPIO pin
void setTxGPIOPinMode();
/* check m_rxValid that calling is safe */
void rxBits();
void rxBits(const uint32_t isrTick);
static void disableInterrupts();
static void restoreInterrupts();
static void rxBitISR(UARTBase* self);
static void rxBitSyncISR(UARTBase* self);
static inline uint32_t IRAM_ATTR microsToTicks(uint32_t micros) ALWAYS_INLINE_ATTR {
return micros << 1;
}
static inline uint32_t ticksToMicros(uint32_t ticks) ALWAYS_INLINE_ATTR {
return ticks >> 1;
}
// Member variables
volatile uint32_t* m_rxReg;
uint32_t m_rxBitMask;
#if !defined(ESP8266)
volatile uint32_t* m_txReg;
#endif
uint32_t m_txBitMask;
int8_t m_txEnablePin = -1;
uint8_t m_dataBits;
bool m_oneWire;
bool m_rxValid = false;
bool m_rxEnabled = false;
bool m_txValid = false;
bool m_txEnableValid = false;
/// PDU bits include data, parity and stop bits; the start bit is not counted.
uint8_t m_pduBits;
bool m_intTxEnabled;
bool m_rxGPIOHasPullUp = false;
bool m_rxGPIOPullUpEnabled = true;
bool m_txGPIOOpenDrain = false;
Parity m_parityMode;
uint8_t m_stopBits;
bool m_lastReadParity;
bool m_overflow = false;
uint32_t m_bitTicks;
uint8_t m_parityInPos;
uint8_t m_parityOutPos;
int8_t m_rxLastBit; // 0 thru (m_pduBits - m_stopBits - 1): data/parity bits. -1: start bit. (m_pduBits - 1): stop bit.
uint8_t m_rxCurByte = 0;
std::unique_ptr<circular_queue<uint8_t> > m_buffer;
std::unique_ptr<circular_queue<uint8_t> > m_parityBuffer;
uint32_t m_periodStart;
uint32_t m_periodDuration;
#ifndef ESP32
static uint32_t m_savedPS;
#else
static portMUX_TYPE m_interruptsMux;
#endif
// the ISR stores the relative bit times in the buffer. The inversion corrected level is used as sign bit (2's complement):
// 1 = positive including 0, 0 = negative.
std::unique_ptr<circular_queue<uint32_t, UARTBase*> > m_isrBuffer;
const Delegate<void(uint32_t&&), UARTBase*> m_isrBufferForEachDel { [](UARTBase* self, uint32_t&& isrTick) { self->rxBits(isrTick); }, this };
std::atomic<bool> m_isrOverflow { false };
uint32_t m_isrLastTick;
bool m_rxCurParity = false;
Delegate<void(), void*> m_rxHandler;
};
template< class GpioCapabilities > class BasicUART : public UARTBase {
static_assert(std::is_base_of<IGpioCapabilities, GpioCapabilities>::value,
"template argument is not derived from IGpioCapabilities");
public:
BasicUART() : UARTBase() {
}
/// Ctor to set defaults for pins.
/// @param rxPin the GPIO pin used for RX
/// @param txPin -1 for onewire protocol, GPIO pin used for twowire TX
BasicUART(int8_t rxPin, int8_t txPin = -1, bool invert = false) :
UARTBase(rxPin, txPin, invert) {
}
/// Configure the BasicUART object for use.
/// @param baud the TX/RX bitrate
/// @param config sets databits, parity, and stop bit count
/// @param rxPin -1 or default: either no RX pin, or keeps the rxPin set in the ctor
/// @param txPin -1 or default: either no TX pin (onewire), or keeps the txPin set in the ctor
/// @param invert true: uses invert line level logic
/// @param bufCapacity the capacity for the received bytes buffer
/// @param isrBufCapacity 0: derived from bufCapacity. The capacity of the internal asynchronous
/// bit receive buffer, a suggested size is bufCapacity times the sum of
/// start, data, parity and stop bit count.
void begin(uint32_t baud, Config config,
int8_t rxPin, int8_t txPin, bool invert,
int bufCapacity = 64, int isrBufCapacity = 0) {
UARTBase::begin(baud, config, rxPin, txPin, invert);
if (GpioCapabilities::isValidInputPin(rxPin)) {
beginRx(GpioCapabilities:: hasPullUp(rxPin), bufCapacity, isrBufCapacity);
}
if (GpioCapabilities::isValidOutputPin(txPin)) {
beginTx();
}
enableRx(true);
}
void begin(uint32_t baud, Config config,
int8_t rxPin, int8_t txPin) {
begin(baud, config, rxPin, txPin, m_invert);
}
void begin(uint32_t baud, Config config,
int8_t rxPin) {
begin(baud, config, rxPin, m_txPin, m_invert);
}
void begin(uint32_t baud, Config config = SWSERIAL_8N1) {
begin(baud, config, m_rxPin, m_txPin, m_invert);
}
void setTransmitEnablePin(int8_t txEnablePin) {
UARTBase::setTransmitEnablePin(
GpioCapabilities::isValidOutputPin(txEnablePin) ? txEnablePin : -1);
}
};
using UART = BasicUART< GpioCapabilities >;
}; // namespace EspSoftwareSerial
using SoftwareSerial = EspSoftwareSerial::UART;
using namespace EspSoftwareSerial;
#if __GNUC__ < 12
// The template member functions below must be in IRAM, but due to a bug GCC doesn't currently
// honor the attribute. Instead, it is possible to do explicit specialization and adorn
// these with the IRAM attribute:
// Delegate<>::operator (), circular_queue<>::available,
// circular_queue<>::available_for_push, circular_queue<>::push_peek, circular_queue<>::push
extern template void delegate::detail::DelegateImpl<void*, void>::operator()() const;
extern template size_t circular_queue<uint32_t, EspSoftwareSerial::UARTBase*>::available() const;
extern template bool circular_queue<uint32_t, EspSoftwareSerial::UARTBase*>::push(uint32_t&&);
extern template bool circular_queue<uint32_t, EspSoftwareSerial::UARTBase*>::push(const uint32_t&);
#endif // __GNUC__ < 12
#endif // __SoftwareSerial_h

File diff suppressed because it is too large Load Diff

@ -1,567 +0,0 @@
/*
MultiDelegate.h - A queue or event multiplexer based on the efficient Delegate
class
Copyright (c) 2019-2020 Dirk O. Kaar. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __MULTIDELEGATE_H
#define __MULTIDELEGATE_H
#include <iterator>
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
#include <atomic>
#else
#include "circular_queue/ghostl.h"
#endif
#if defined(ESP8266)
#include <interrupts.h>
using esp8266::InterruptLock;
#elif defined(ARDUINO)
class InterruptLock {
public:
InterruptLock() {
noInterrupts();
}
~InterruptLock() {
interrupts();
}
};
#else
#include <mutex>
#endif
namespace
{
template< typename Delegate, typename R, bool ISQUEUE = false, typename... P>
struct CallP
{
static R execute(Delegate& del, P... args)
{
return del(std::forward<P...>(args...));
}
};
template< typename Delegate, bool ISQUEUE, typename... P>
struct CallP<Delegate, void, ISQUEUE, P...>
{
static bool execute(Delegate& del, P... args)
{
del(std::forward<P...>(args...));
return true;
}
};
template< typename Delegate, typename R, bool ISQUEUE = false>
struct Call
{
static R execute(Delegate& del)
{
return del();
}
};
template< typename Delegate, bool ISQUEUE>
struct Call<Delegate, void, ISQUEUE>
{
static bool execute(Delegate& del)
{
del();
return true;
}
};
}
namespace delegate
{
namespace detail
{
template< typename Delegate, typename R, bool ISQUEUE = false, size_t QUEUE_CAPACITY = 32, typename... P>
class MultiDelegatePImpl
{
public:
MultiDelegatePImpl() = default;
~MultiDelegatePImpl()
{
*this = nullptr;
}
MultiDelegatePImpl(const MultiDelegatePImpl&) = delete;
MultiDelegatePImpl& operator=(const MultiDelegatePImpl&) = delete;
MultiDelegatePImpl(MultiDelegatePImpl&& md)
{
first = md.first;
last = md.last;
unused = md.unused;
nodeCount = md.nodeCount;
md.first = nullptr;
md.last = nullptr;
md.unused = nullptr;
md.nodeCount = 0;
}
MultiDelegatePImpl(const Delegate& del)
{
add(del);
}
MultiDelegatePImpl(Delegate&& del)
{
add(std::move(del));
}
MultiDelegatePImpl& operator=(MultiDelegatePImpl&& md)
{
first = md.first;
last = md.last;
unused = md.unused;
nodeCount = md.nodeCount;
md.first = nullptr;
md.last = nullptr;
md.unused = nullptr;
md.nodeCount = 0;
return *this;
}
MultiDelegatePImpl& operator=(std::nullptr_t)
{
if (last)
last->mNext = unused;
if (first)
unused = first;
while (unused)
{
auto to_delete = unused;
unused = unused->mNext;
delete(to_delete);
}
return *this;
}
MultiDelegatePImpl& operator+=(const Delegate& del)
{
add(del);
return *this;
}
MultiDelegatePImpl& operator+=(Delegate&& del)
{
add(std::move(del));
return *this;
}
protected:
struct Node_t
{
~Node_t()
{
mDelegate = nullptr; // special overload in Delegate
}
Node_t* mNext = nullptr;
Delegate mDelegate;
};
Node_t* first = nullptr;
Node_t* last = nullptr;
Node_t* unused = nullptr;
size_t nodeCount = 0;
// Returns a pointer to an unused Node_t,
// or if none are available allocates a new one,
// or nullptr if limit is reached
Node_t* IRAM_ATTR get_node_unsafe()
{
Node_t* result = nullptr;
// try to get an item from unused items list
if (unused)
{
result = unused;
unused = unused->mNext;
}
// if no unused items, and count not too high, allocate a new one
else if (nodeCount < QUEUE_CAPACITY)
{
#if defined(ESP8266) || defined(ESP32)
result = new (std::nothrow) Node_t;
#else
result = new Node_t;
#endif
if (result)
++nodeCount;
}
return result;
}
void recycle_node_unsafe(Node_t* node)
{
node->mDelegate = nullptr; // special overload in Delegate
node->mNext = unused;
unused = node;
}
#ifndef ARDUINO
std::mutex mutex_unused;
#endif
public:
class iterator : public std::iterator<std::forward_iterator_tag, Delegate>
{
public:
Node_t* current = nullptr;
Node_t* prev = nullptr;
const Node_t* stop = nullptr;
iterator(MultiDelegatePImpl& md) : current(md.first), stop(md.last) {}
iterator() = default;
iterator(const iterator&) = default;
iterator& operator=(const iterator&) = default;
iterator& operator=(iterator&&) = default;
operator bool() const
{
return current && stop;
}
bool operator==(const iterator& rhs) const
{
return current == rhs.current;
}
bool operator!=(const iterator& rhs) const
{
return !operator==(rhs);
}
Delegate& operator*() const
{
return current->mDelegate;
}
Delegate* operator->() const
{
return &current->mDelegate;
}
iterator& operator++() // prefix
{
if (current && stop != current)
{
prev = current;
current = current->mNext;
}
else
current = nullptr; // end
return *this;
}
iterator& operator++(int) // postfix
{
iterator tmp(*this);
operator++();
return tmp;
}
};
iterator begin()
{
return iterator(*this);
}
iterator end() const
{
return iterator();
}
const Delegate* add(const Delegate& del)
{
return add(Delegate(del));
}
const Delegate* add(Delegate&& del)
{
if (!del)
return nullptr;
#ifdef ARDUINO
InterruptLock lockAllInterruptsInThisScope;
#else
std::lock_guard<std::mutex> lock(mutex_unused);
#endif
Node_t* item = ISQUEUE ? get_node_unsafe() :
#if defined(ESP8266) || defined(ESP32)
new (std::nothrow) Node_t;
#else
new Node_t;
#endif
if (!item)
return nullptr;
item->mDelegate = std::move(del);
item->mNext = nullptr;
if (last)
last->mNext = item;
else
first = item;
last = item;
return &item->mDelegate;
}
iterator erase(iterator it)
{
if (!it)
return end();
#ifdef ARDUINO
InterruptLock lockAllInterruptsInThisScope;
#else
std::lock_guard<std::mutex> lock(mutex_unused);
#endif
auto to_recycle = it.current;
if (last == it.current)
last = it.prev;
it.current = it.current->mNext;
if (it.prev)
{
it.prev->mNext = it.current;
}
else
{
first = it.current;
}
if (ISQUEUE)
recycle_node_unsafe(to_recycle);
else
delete to_recycle;
return it;
}
bool erase(const Delegate* const del)
{
auto it = begin();
while (it)
{
if (del == &(*it))
{
erase(it);
return true;
}
++it;
}
return false;
}
operator bool() const
{
return first;
}
R operator()(P... args)
{
auto it = begin();
if (!it)
return {};
static std::atomic<bool> fence(false);
// prevent recursive calls
#if defined(ARDUINO) && !defined(ESP32)
if (fence.load()) return {};
fence.store(true);
#else
if (fence.exchange(true)) return {};
#endif
R result;
do
{
result = CallP<Delegate, R, ISQUEUE, P...>::execute(*it, args...);
if (result && ISQUEUE)
it = erase(it);
else
++it;
#if defined(ESP8266) || defined(ESP32)
// running callbacks might last too long for watchdog etc.
optimistic_yield(10000);
#endif
} while (it);
fence.store(false);
return result;
}
};
template< typename Delegate, typename R = void, bool ISQUEUE = false, size_t QUEUE_CAPACITY = 32>
class MultiDelegateImpl : public MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>
{
public:
using MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>::MultiDelegatePImpl;
R operator()()
{
auto it = this->begin();
if (!it)
return {};
static std::atomic<bool> fence(false);
// prevent recursive calls
#if defined(ARDUINO) && !defined(ESP32)
if (fence.load()) return {};
fence.store(true);
#else
if (fence.exchange(true)) return {};
#endif
R result;
do
{
result = Call<Delegate, R, ISQUEUE>::execute(*it);
if (result && ISQUEUE)
it = this->erase(it);
else
++it;
#if defined(ESP8266) || defined(ESP32)
// running callbacks might last too long for watchdog etc.
optimistic_yield(10000);
#endif
} while (it);
fence.store(false);
return result;
}
};
template< typename Delegate, typename R, bool ISQUEUE, size_t QUEUE_CAPACITY, typename... P> class MultiDelegate;
template< typename Delegate, typename R, bool ISQUEUE, size_t QUEUE_CAPACITY, typename... P>
class MultiDelegate<Delegate, R(P...), ISQUEUE, QUEUE_CAPACITY> : public MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY, P...>
{
public:
using MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY, P...>::MultiDelegatePImpl;
};
template< typename Delegate, typename R, bool ISQUEUE, size_t QUEUE_CAPACITY>
class MultiDelegate<Delegate, R(), ISQUEUE, QUEUE_CAPACITY> : public MultiDelegateImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>
{
public:
using MultiDelegateImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>::MultiDelegateImpl;
};
template< typename Delegate, bool ISQUEUE, size_t QUEUE_CAPACITY, typename... P>
class MultiDelegate<Delegate, void(P...), ISQUEUE, QUEUE_CAPACITY> : public MultiDelegatePImpl<Delegate, void, ISQUEUE, QUEUE_CAPACITY, P...>
{
public:
using MultiDelegatePImpl<Delegate, void, ISQUEUE, QUEUE_CAPACITY, P...>::MultiDelegatePImpl;
void operator()(P... args)
{
auto it = this->begin();
if (!it)
return;
static std::atomic<bool> fence(false);
// prevent recursive calls
#if defined(ARDUINO) && !defined(ESP32)
if (fence.load()) return;
fence.store(true);
#else
if (fence.exchange(true)) return;
#endif
do
{
CallP<Delegate, void, ISQUEUE, P...>::execute(*it, args...);
if (ISQUEUE)
it = this->erase(it);
else
++it;
#if defined(ESP8266) || defined(ESP32)
// running callbacks might last too long for watchdog etc.
optimistic_yield(10000);
#endif
} while (it);
fence.store(false);
}
};
template< typename Delegate, bool ISQUEUE, size_t QUEUE_CAPACITY>
class MultiDelegate<Delegate, void(), ISQUEUE, QUEUE_CAPACITY> : public MultiDelegateImpl<Delegate, void, ISQUEUE, QUEUE_CAPACITY>
{
public:
using MultiDelegateImpl<Delegate, void, ISQUEUE, QUEUE_CAPACITY>::MultiDelegateImpl;
void operator()()
{
auto it = this->begin();
if (!it)
return;
static std::atomic<bool> fence(false);
// prevent recursive calls
#if defined(ARDUINO) && !defined(ESP32)
if (fence.load()) return;
fence.store(true);
#else
if (fence.exchange(true)) return;
#endif
do
{
Call<Delegate, void, ISQUEUE>::execute(*it);
if (ISQUEUE)
it = this->erase(it);
else
++it;
#if defined(ESP8266) || defined(ESP32)
// running callbacks might last too long for watchdog etc.
optimistic_yield(10000);
#endif
} while (it);
fence.store(false);
}
};
}
}
/**
The MultiDelegate class template can be specialized to either a queue or an event multiplexer.
It is designed to be used with Delegate, the efficient runtime wrapper for C function ptr and C++ std::function.
@tparam Delegate specifies the concrete type that MultiDelegate bases the queue or event multiplexer on.
@tparam ISQUEUE modifies the generated MultiDelegate class in subtle ways. In queue mode (ISQUEUE == true),
the value of QUEUE_CAPACITY enforces the maximum number of simultaneous items the queue can contain.
This is exploited to minimize the use of new and delete by reusing already allocated items, thus
reducing heap fragmentation. In event multiplexer mode (ISQUEUE = false), new and delete are
used for allocation of the event handler items.
If the result type of the function call operator of Delegate is void, calling a MultiDelegate queue
removes each item after calling it; a Multidelegate event multiplexer keeps event handlers until
explicitly removed.
If the result type of the function call operator of Delegate is non-void, in a MultiDelegate queue
the type-conversion to bool of that result determines if the item is immediately removed or kept
after each call: if true is returned, the item is removed. A Multidelegate event multiplexer keeps event
handlers until they are explicitly removed.
@tparam QUEUE_CAPACITY is only used if ISQUEUE == true. Then, it sets the maximum capacity that the queue dynamically
allocates from the heap. Unused items are not returned to the heap, but are managed by the MultiDelegate
instance during its own lifetime for efficiency.
*/
template< typename Delegate, bool ISQUEUE = false, size_t QUEUE_CAPACITY = 32>
class MultiDelegate : public delegate::detail::MultiDelegate<Delegate, typename Delegate::target_type, ISQUEUE, QUEUE_CAPACITY>
{
public:
using delegate::detail::MultiDelegate<Delegate, typename Delegate::target_type, ISQUEUE, QUEUE_CAPACITY>::MultiDelegate;
};
#endif // __MULTIDELEGATE_H

@ -1,384 +0,0 @@
/*
circular_queue.h - Implementation of a lock-free circular queue for EspSoftwareSerial.
Copyright (c) 2019 Dirk O. Kaar. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __circular_queue_h
#define __circular_queue_h
#ifdef ARDUINO
#include <Arduino.h>
#endif
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
#include <atomic>
#include <memory>
#include <algorithm>
#include "Delegate.h"
using std::min;
#else
#include "ghostl.h"
#endif
#if !defined(ESP32) && !defined(ESP8266)
#define IRAM_ATTR
#endif
#if defined(__GNUC__)
#undef ALWAYS_INLINE_ATTR
#define ALWAYS_INLINE_ATTR __attribute__((always_inline))
#else
#define ALWAYS_INLINE_ATTR
#endif
/*!
@brief Instance class for a single-producer, single-consumer circular queue / ring buffer (FIFO).
This implementation is lock-free between producer and consumer for the available(), peek(),
pop(), and push() type functions.
*/
template< typename T, typename ForEachArg = void >
class circular_queue
{
public:
/*!
@brief Constructs a valid, but zero-capacity dummy queue.
*/
circular_queue() : m_bufSize(1)
{
m_inPos.store(0);
m_outPos.store(0);
}
/*!
@brief Constructs a queue of the given maximum capacity.
*/
circular_queue(const size_t capacity) : m_bufSize(capacity + 1), m_buffer(new T[m_bufSize])
{
m_inPos.store(0);
m_outPos.store(0);
}
circular_queue(circular_queue&& cq) :
m_bufSize(cq.m_bufSize), m_buffer(cq.m_buffer), m_inPos(cq.m_inPos.load()), m_outPos(cq.m_outPos.load())
{}
~circular_queue()
{
m_buffer.reset();
}
circular_queue(const circular_queue&) = delete;
circular_queue& operator=(circular_queue&& cq)
{
m_bufSize = cq.m_bufSize;
m_buffer = cq.m_buffer;
m_inPos.store(cq.m_inPos.load());
m_outPos.store(cq.m_outPos.load());
}
circular_queue& operator=(const circular_queue&) = delete;
/*!
@brief Get the numer of elements the queue can hold at most.
*/
size_t capacity() const
{
return m_bufSize - 1;
}
/*!
@brief Resize the queue. The available elements in the queue are preserved.
This is not lock-free and concurrent producer or consumer access
will lead to corruption.
@return True if the new capacity could accommodate the present elements in
the queue, otherwise nothing is done and false is returned.
*/
bool capacity(const size_t cap);
/*!
@brief Discard all data in the queue.
*/
void flush()
{
m_outPos.store(m_inPos.load());
}
/*!
@brief Get a snapshot number of elements that can be retrieved by pop.
*/
size_t IRAM_ATTR available() const
{
int avail = static_cast<int>(m_inPos.load() - m_outPos.load());
if (avail < 0) avail += m_bufSize;
return avail;
}
/*!
@brief Get the remaining free elementes for pushing.
*/
size_t IRAM_ATTR available_for_push() const
{
int avail = static_cast<int>(m_outPos.load() - m_inPos.load()) - 1;
if (avail < 0) avail += m_bufSize;
return avail;
}
/*!
@brief Peek at the next element pop will return without removing it from the queue.
@return An rvalue copy of the next element that can be popped. If the queue is empty,
return an rvalue copy of the element that is pending the next push.
*/
T peek() const
{
const auto outPos = m_outPos.load(std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_acquire);
return m_buffer[outPos];
}
/*!
@brief Peek at the next pending input value.
@return A reference to the next element that can be pushed.
*/
T& IRAM_ATTR pushpeek()
{
const auto inPos = m_inPos.load(std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_acquire);
return m_buffer[inPos];
}
/*!
@brief Release the next pending input value, accessible by pushpeek(), into the queue.
@return true if the queue accepted the value, false if the queue
was full.
*/
bool IRAM_ATTR push()
{
const auto inPos = m_inPos.load(std::memory_order_acquire);
const size_t next = (inPos + 1) % m_bufSize;
if (next == m_outPos.load(std::memory_order_relaxed)) {
return false;
}
std::atomic_thread_fence(std::memory_order_release);
m_inPos.store(next, std::memory_order_release);
return true;
}
/*!
@brief Move the rvalue parameter into the queue.
@return true if the queue accepted the value, false if the queue
was full.
*/
bool IRAM_ATTR push(T&& val)
{
const auto inPos = m_inPos.load(std::memory_order_acquire);
const size_t next = (inPos + 1) % m_bufSize;
if (next == m_outPos.load(std::memory_order_relaxed)) {
return false;
}
m_buffer[inPos] = std::move(val);
std::atomic_thread_fence(std::memory_order_release);
m_inPos.store(next, std::memory_order_release);
return true;
}
/*!
@brief Push a copy of the parameter into the queue.
@return true if the queue accepted the value, false if the queue
was full.
*/
inline bool IRAM_ATTR push(const T& val) ALWAYS_INLINE_ATTR
{
T v(val);
return push(std::move(v));
}
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
/*!
@brief Push copies of multiple elements from a buffer into the queue,
in order, beginning at buffer's head.
@return The number of elements actually copied into the queue, counted
from the buffer head.
*/
size_t push_n(const T* buffer, size_t size);
#endif
/*!
@brief Pop the next available element from the queue.
@return An rvalue copy of the popped element, or a default
value of type T if the queue is empty.
*/
T pop();
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
/*!
@brief Pop multiple elements in ordered sequence from the queue to a buffer.
If buffer is nullptr, simply discards up to size elements from the queue.
@return The number of elements actually popped from the queue to
buffer.
*/
size_t pop_n(T* buffer, size_t size);
#endif
/*!
@brief Iterate over and remove each available element from queue,
calling back fun with an rvalue reference of every single element.
*/
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
void for_each(const Delegate<void(T&&), ForEachArg>& fun);
#else
void for_each(Delegate<void(T&&), ForEachArg> fun);
#endif
/*!
@brief In reverse order, iterate over, pop and optionally requeue each available element from the queue,
calling back fun with a reference of every single element.
Requeuing is dependent on the return boolean of the callback function. If it
returns true, the requeue occurs.
*/
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
bool for_each_rev_requeue(const Delegate<bool(T&), ForEachArg>& fun);
#else
bool for_each_rev_requeue(Delegate<bool(T&), ForEachArg> fun);
#endif
protected:
size_t m_bufSize;
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
std::unique_ptr<T[]> m_buffer;
#else
std::unique_ptr<T> m_buffer;
#endif
std::atomic<size_t> m_inPos;
std::atomic<size_t> m_outPos;
};
template< typename T, typename ForEachArg >
bool circular_queue<T, ForEachArg>::capacity(const size_t cap)
{
if (cap + 1 == m_bufSize) return true;
else if (available() > cap) return false;
std::unique_ptr<T[] > buffer(new T[cap + 1]);
const auto available = pop_n(buffer, cap);
m_buffer.reset(buffer);
m_bufSize = cap + 1;
m_inPos.store(available, std::memory_order_relaxed);
m_outPos.store(0, std::memory_order_relaxed);
return true;
}
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
template< typename T, typename ForEachArg >
size_t circular_queue<T, ForEachArg>::push_n(const T* buffer, size_t size)
{
const auto inPos = m_inPos.load(std::memory_order_acquire);
const auto outPos = m_outPos.load(std::memory_order_relaxed);
size_t blockSize = (outPos > inPos) ? outPos - 1 - inPos : (outPos == 0) ? m_bufSize - 1 - inPos : m_bufSize - inPos;
blockSize = min(size, blockSize);
if (!blockSize) return 0;
int next = (inPos + blockSize) % m_bufSize;
auto dest = m_buffer.get() + inPos;
std::copy_n(std::make_move_iterator(buffer), blockSize, dest);
size = min(size - blockSize, outPos > 1 ? static_cast<size_t>(outPos - next - 1) : 0);
next += size;
dest = m_buffer.get();
std::copy_n(std::make_move_iterator(buffer + blockSize), size, dest);
std::atomic_thread_fence(std::memory_order_release);
m_inPos.store(next, std::memory_order_release);
return blockSize + size;
}
#endif
template< typename T, typename ForEachArg >
T circular_queue<T, ForEachArg>::pop()
{
const auto outPos = m_outPos.load(std::memory_order_acquire);
if (m_inPos.load(std::memory_order_relaxed) == outPos) return {};
std::atomic_thread_fence(std::memory_order_acquire);
auto val = std::move(m_buffer[outPos]);
m_outPos.store((outPos + 1) % m_bufSize, std::memory_order_release);
return val;
}
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
template< typename T, typename ForEachArg >
size_t circular_queue<T, ForEachArg>::pop_n(T* buffer, size_t size) {
size_t avail = size = min(size, available());
if (!avail) return 0;
const auto outPos = m_outPos.load(std::memory_order_acquire);
size_t n = min(avail, static_cast<size_t>(m_bufSize - outPos));
std::atomic_thread_fence(std::memory_order_acquire);
if (buffer) {
buffer = std::copy_n(std::make_move_iterator(m_buffer.get() + outPos), n, buffer);
avail -= n;
std::copy_n(std::make_move_iterator(m_buffer.get()), avail, buffer);
}
m_outPos.store((outPos + size) % m_bufSize, std::memory_order_release);
return size;
}
#endif
template< typename T, typename ForEachArg >
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
void circular_queue<T, ForEachArg>::for_each(const Delegate<void(T&&), ForEachArg>& fun)
#else
void circular_queue<T, ForEachArg>::for_each(Delegate<void(T&&), ForEachArg> fun)
#endif
{
auto outPos = m_outPos.load(std::memory_order_acquire);
const auto inPos = m_inPos.load(std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_acquire);
while (outPos != inPos)
{
fun(std::move(m_buffer[outPos]));
outPos = (outPos + 1) % m_bufSize;
m_outPos.store(outPos, std::memory_order_release);
}
}
template< typename T, typename ForEachArg >
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
bool circular_queue<T, ForEachArg>::for_each_rev_requeue(const Delegate<bool(T&), ForEachArg>& fun)
#else
bool circular_queue<T, ForEachArg>::for_each_rev_requeue(Delegate<bool(T&), ForEachArg> fun)
#endif
{
auto inPos0 = circular_queue<T, ForEachArg>::m_inPos.load(std::memory_order_acquire);
auto outPos = circular_queue<T, ForEachArg>::m_outPos.load(std::memory_order_relaxed);
if (outPos == inPos0) return false;
auto pos = inPos0;
auto outPos1 = inPos0;
const auto posDecr = circular_queue<T, ForEachArg>::m_bufSize - 1;
std::atomic_thread_fence(std::memory_order_acquire);
do {
pos = (pos + posDecr) % circular_queue<T, ForEachArg>::m_bufSize;
T&& val = std::move(circular_queue<T, ForEachArg>::m_buffer[pos]);
if (fun(val))
{
outPos1 = (outPos1 + posDecr) % circular_queue<T, ForEachArg>::m_bufSize;
if (outPos1 != pos) circular_queue<T, ForEachArg>::m_buffer[outPos1] = std::move(val);
}
} while (pos != outPos);
std::atomic_thread_fence(std::memory_order_release);
circular_queue<T, ForEachArg>::m_outPos.store(outPos1, std::memory_order_release);
return true;
}
#endif // __circular_queue_h

@ -1,310 +0,0 @@
/*
circular_queue_mp.h - Implementation of a lock-free circular queue for EspSoftwareSerial.
Copyright (c) 2019 Dirk O. Kaar. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __circular_queue_mp_h
#define __circular_queue_mp_h
#include "circular_queue.h"
#if defined(ESP8266)
#include <interrupts.h>
using esp8266::InterruptLock;
#endif
/*!
@brief Instance class for a multi-producer, single-consumer circular queue / ring buffer (FIFO).
This implementation is lock-free between producers and consumer for the available(), peek(),
pop(), and push() type functions.
*/
template< typename T, typename ForEachArg = void >
class circular_queue_mp : protected circular_queue<T, ForEachArg>
{
public:
circular_queue_mp() : circular_queue<T, ForEachArg>()
{
m_inPos_mp.store(0);
m_concurrent_mp.store(0);
}
circular_queue_mp(const size_t capacity) : circular_queue<T, ForEachArg>(capacity)
{
m_inPos_mp.store(0);
m_concurrent_mp.store(0);
}
circular_queue_mp(circular_queue_mp<T, ForEachArg>&& cq) : circular_queue<T, ForEachArg>(std::move(cq))
{
m_inPos_mp.store(cq.m_inPos_mp.load());
m_concurrent_mp.store(cq.m_concurrent_mp.load());
}
circular_queue_mp& operator=(circular_queue_mp&& cq)
{
circular_queue<T, ForEachArg>::operator=(std::move(cq));
m_inPos_mp.store(cq.m_inPos_mp.load());
m_concurrent_mp.store(cq.m_concurrent_mp.load());
}
circular_queue_mp& operator=(const circular_queue_mp&) = delete;
using circular_queue<T, ForEachArg>::capacity;
using circular_queue<T, ForEachArg>::flush;
using circular_queue<T, ForEachArg>::peek;
using circular_queue<T, ForEachArg>::pop;
using circular_queue<T, ForEachArg>::pop_n;
using circular_queue<T, ForEachArg>::for_each;
using circular_queue<T, ForEachArg>::for_each_rev_requeue;
T& pushpeek() = delete;
bool push() = delete;
inline size_t IRAM_ATTR available() const ALWAYS_INLINE_ATTR
{
return circular_queue<T, ForEachArg>::available();
}
inline size_t IRAM_ATTR available_for_push() const ALWAYS_INLINE_ATTR
{
return circular_queue<T, ForEachArg>::available_for_push();
}
/*!
@brief Resize the queue. The available elements in the queue are preserved.
This is not lock-free and concurrent producer or consumer access
will lead to corruption.
@return True if the new capacity could accommodate the present elements in
the queue, otherwise nothing is done and false is returned.
*/
bool capacity(const size_t cap);
/*!
@brief Move the rvalue parameter into the queue, guarded
for multiple concurrent producers.
@return true if the queue accepted the value, false if the queue
was full.
*/
bool push(T&& val);
/*!
@brief Push a copy of the parameter into the queue, guarded
for multiple concurrent producers.
@return true if the queue accepted the value, false if the queue
was full.
*/
inline bool IRAM_ATTR push(const T& val) ALWAYS_INLINE_ATTR
{
T v(val);
return push(std::move(v));
}
/*!
@brief Push copies of multiple elements from a buffer into the queue,
in order, beginning at buffer's head. This is safe for
multiple producers.
@return The number of elements actually copied into the queue, counted
from the buffer head.
*/
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
size_t push_n(const T* buffer, size_t size);
#endif
protected:
std::atomic<size_t> m_inPos_mp;
std::atomic<int> m_concurrent_mp;
};
template< typename T, typename ForEachArg >
bool circular_queue_mp<T, ForEachArg>::capacity(const size_t cap)
{
if (cap + 1 == circular_queue<T, ForEachArg>::m_bufSize) return true;
else if (!circular_queue<T, ForEachArg>::capacity(cap)) return false;
m_inPos_mp.store(circular_queue<T, ForEachArg>::m_inPos.load(std::memory_order_relaxed),
std::memory_order_relaxed);
m_concurrent_mp.store(0, std::memory_order_relaxed);
return true;
}
template< typename T, typename ForEachArg >
bool IRAM_ATTR circular_queue_mp<T, ForEachArg>::push(T&& val)
{
size_t inPos_mp;
size_t next;
#if !defined(ESP32) && defined(ARDUINO)
class InterruptLock {
public:
InterruptLock() {
noInterrupts();
}
~InterruptLock() {
interrupts();
}
};
{
InterruptLock lock;
#else
++m_concurrent_mp;
do
{
#endif
inPos_mp = m_inPos_mp.load(std::memory_order_relaxed);
next = (inPos_mp + 1) % circular_queue<T, ForEachArg>::m_bufSize;
if (next == circular_queue<T, ForEachArg>::m_outPos.load(std::memory_order_relaxed)) {
#if !defined(ESP32) && defined(ARDUINO)
return false;
}
m_inPos_mp.store(next, std::memory_order_relaxed);
m_concurrent_mp.store(m_concurrent_mp.load(std::memory_order_relaxed) + 1,
std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_release);
}
#else
int concurrent_mp;
do
{
inPos_mp = m_inPos_mp.load();
concurrent_mp = m_concurrent_mp.load();
if (1 == concurrent_mp)
{
circular_queue<T, ForEachArg>::m_inPos.store(inPos_mp, std::memory_order_release);
}
}
while (!m_concurrent_mp.compare_exchange_weak(concurrent_mp, concurrent_mp - 1));
return false;
}
}
while (!m_inPos_mp.compare_exchange_weak(inPos_mp, next));
#endif
circular_queue<T, ForEachArg>::m_buffer[inPos_mp] = std::move(val);
std::atomic_thread_fence(std::memory_order_release);
#if !defined(ESP32) && defined(ARDUINO)
{
InterruptLock lock;
if (1 == m_concurrent_mp.load(std::memory_order_relaxed))
{
inPos_mp = m_inPos_mp.load(std::memory_order_relaxed);
circular_queue<T, ForEachArg>::m_inPos.store(inPos_mp, std::memory_order_relaxed);
}
m_concurrent_mp.store(m_concurrent_mp.load(std::memory_order_relaxed) - 1,
std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_release);
}
#else
int concurrent_mp;
do
{
inPos_mp = m_inPos_mp.load();
concurrent_mp = m_concurrent_mp.load();
if (1 == concurrent_mp)
{
circular_queue<T, ForEachArg>::m_inPos.store(inPos_mp, std::memory_order_release);
}
}
while (!m_concurrent_mp.compare_exchange_weak(concurrent_mp, concurrent_mp - 1));
#endif
return true;
}
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
template< typename T, typename ForEachArg >
size_t circular_queue_mp<T, ForEachArg>::push_n(const T* buffer, size_t size)
{
const auto outPos = circular_queue<T, ForEachArg>::m_outPos.load(std::memory_order_relaxed);
size_t inPos_mp;
size_t next;
size_t blockSize;
#if !defined(ESP32) && defined(ARDUINO)
{
InterruptLock lock;
#else
++m_concurrent_mp;
do
{
#endif
inPos_mp = m_inPos_mp.load(std::memory_order_relaxed);
blockSize = (outPos > inPos_mp) ? outPos - 1 - inPos_mp : (outPos == 0) ? circular_queue<T, ForEachArg>::m_bufSize - 1 - inPos_mp : circular_queue<T, ForEachArg>::m_bufSize - inPos_mp;
blockSize = min(size, blockSize);
if (!blockSize)
{
#if !defined(ESP32) && defined(ARDUINO)
return 0;
}
next = (inPos_mp + blockSize) % circular_queue<T, ForEachArg>::m_bufSize;
m_inPos_mp.store(next, std::memory_order_relaxed);
m_concurrent_mp.store(m_concurrent_mp.load(std::memory_order_relaxed) + 1,
std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_release);
}
#else
int concurrent_mp = m_concurrent_mp.load();
do
{
inPos_mp = m_inPos_mp.load();
concurrent_mp = m_concurrent_mp.load();
if (1 == concurrent_mp)
{
circular_queue<T, ForEachArg>::m_inPos.store(inPos_mp, std::memory_order_release);
}
}
while (!m_concurrent_mp.compare_exchange_weak(concurrent_mp, concurrent_mp - 1));
return false;
}
}
while (!m_inPos_mp.compare_exchange_weak(inPos_mp, next));
#endif
auto dest = circular_queue<T, ForEachArg>::m_buffer.get() + inPos_mp;
std::copy_n(std::make_move_iterator(buffer), blockSize, dest);
size = min(size - blockSize, outPos > 1 ? static_cast<size_t>(outPos - next - 1) : 0);
next += size;
dest = circular_queue<T, ForEachArg>::m_buffer.get();
std::copy_n(std::make_move_iterator(buffer + blockSize), size, dest);
std::atomic_thread_fence(std::memory_order_release);
#if !defined(ESP32) && defined(ARDUINO)
{
InterruptLock lock;
if (1 == m_concurrent_mp.load(std::memory_order_relaxed))
{
inPos_mp = m_inPos_mp.load(std::memory_order_relaxed);
circular_queue<T, ForEachArg>::m_inPos.store(inPos_mp, std::memory_order_relaxed);
}
m_concurrent_mp.store(m_concurrent_mp.load(std::memory_order_relaxed) - 1,
std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_release);
}
#else
int concurrent_mp;
do
{
inPos_mp = m_inPos_mp.load();
concurrent_mp = m_concurrent_mp.load();
if (1 == concurrent_mp)
{
circular_queue<T, ForEachArg>::m_inPos.store(inPos_mp, std::memory_order_release);
}
}
while (!m_concurrent_mp.compare_exchange_weak(concurrent_mp, concurrent_mp - 1));
#endif
return blockSize + size;
}
#endif
#endif // __circular_queue_mp_h

@ -1,94 +0,0 @@
/*
ghostl.h - Implementation of a bare-bones, mostly no-op, C++ STL shell
that allows building some Arduino ESP8266/ESP32
libraries on Aruduino AVR.
Copyright (c) 2019 Dirk O. Kaar. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __ghostl_h
#define __ghostl_h
#if defined(ARDUINO_ARCH_SAMD)
#include <atomic>
#endif
using size_t = decltype(sizeof(char));
namespace std
{
#if !defined(ARDUINO_ARCH_SAMD)
typedef enum memory_order {
memory_order_relaxed,
memory_order_acquire,
memory_order_release,
memory_order_seq_cst
} memory_order;
template< typename T > class atomic {
private:
T value;
public:
atomic() {}
atomic(T desired) { value = desired; }
void store(T desired, std::memory_order = std::memory_order_seq_cst) volatile noexcept { value = desired; }
T load(std::memory_order = std::memory_order_seq_cst) const volatile noexcept { return value; }
};
inline void atomic_thread_fence(std::memory_order order) noexcept {}
template< typename T > T&& move(T& t) noexcept { return static_cast<T&&>(t); }
#endif
template< typename T, size_t long N > struct array
{
T _M_elems[N];
decltype(sizeof(0)) size() const { return N; }
T& operator[](decltype(sizeof(0)) i) { return _M_elems[i]; }
const T& operator[](decltype(sizeof(0)) i) const { return _M_elems[i]; }
};
template< typename T > class unique_ptr
{
public:
using pointer = T*;
unique_ptr() noexcept : ptr(nullptr) {}
unique_ptr(pointer p) : ptr(p) {}
pointer operator->() const noexcept { return ptr; }
T& operator[](decltype(sizeof(0)) i) const { return ptr[i]; }
void reset(pointer p = pointer()) noexcept
{
delete ptr;
ptr = p;
}
T& operator*() const { return *ptr; }
private:
pointer ptr;
};
template< typename T > using function = T*;
using nullptr_t = decltype(nullptr);
template<typename T>
struct identity {
typedef T type;
};
template <typename T>
inline T&& forward(typename identity<T>::type& t) noexcept
{
return static_cast<typename identity<T>::type&&>(t);
}
}
#endif // __ghostl_h

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 KiB

@ -1,489 +0,0 @@
<!DOCTYPE html>
<html>
<head>
<title></title>
<meta charset="utf-8" />
<meta content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=0" name="viewport" />
<style>
*{
margin:0px;
padding:0px;
}
#myMap{
position:absolute;
width:100%;
height:100%;
}
</style>
<!--
<style>
.bm_bottomLeftOverlay{
display:none !important
}
</style>
-->
<script type='text/javascript'>
var map;
var infobox;
var key;
var zoom = 15;
var center =[39.92, 116.40];
var disablePanning = false;
var disableZooming = false;
var maxZoom = 17;
var minZoom = 5;
var showLocateMeButton = true;
var showMapTypeSelector= true;
var showScalebar= true;
var showZoomButtons =true;
var mapType = "road";
function GetMap() {
map = new Microsoft.Maps.Map('#myMap', {
//credentials: 'AmxEDXs-Yhwj3Uv5WvVB4Q6YvISdMjqrC-pPOw0rNKMu_5rrksVmAJkpcv5HJwJS',
zoom: zoom,
showDashboard: true,
showLocateMeButton:showLocateMeButton,
showMapTypeSelector:showMapTypeSelector,
showTermsLink: false,
//enableHighDpi:true,
enableClickableLogo: false,
//mapTypeId: Microsoft.Maps.MapTypeId.aerial,
//mapTypeId: Microsoft.Maps.MapTypeId.road,
maxZoom: maxZoom,
minZoom: minZoom,
disablePanning:disablePanning,
disableZooming:disableZooming,
//customMapStyle: myStyle,
liteMode: true,
showScalebar: showScalebar,
showZoomButtons: showZoomButtons,
center:realLocation(center),
});
setMapType(mapType);
infobox = new Microsoft.Maps.Infobox(map.getCenter(), {
visible: false,
});
infobox.setMap(map);
Microsoft.Maps.Events.addHandler(map, 'click', function(e) {
if (typeof(KevinkunBingMap) != "undefined") {
KevinkunBingMap.mapClicked(JSON.stringify([e.location.latitude, e.location.longitude]));
}
console.log(JSON.stringify([e.location.latitude, e.location.longitude]));
});
Microsoft.Maps.Events.addHandler(map, 'viewchangeend', function(e) {
if (typeof(KevinkunBingMap) != "undefined") {
KevinkunBingMap.mapViewChangedEnd(JSON.stringify([map.getCenter()
.latitude, map.getCenter()
.longitude
]), map.getZoom(), JSON.stringify(map.getBounds()
.bounds));
}
console.log(JSON.stringify([map.getCenter().latitude,
map.getCenter().longitude]),
map.getZoom(),
JSON.stringify(map.getBounds().bounds));
});
}
function setMapType(type) {
var mapTypeId;
switch (type) {
case 'aerial':
mapTypeId = Microsoft.Maps.MapTypeId.aerial;
break;
case 'canvasDark':
mapTypeId = Microsoft.Maps.MapTypeId.canvasDark;
break;
case 'canvasLight':
mapTypeId = Microsoft.Maps.MapTypeId.canvasLight;
break;
case 'birdseye':
mapTypeId = Microsoft.Maps.MapTypeId.birdseye;
break;
case 'grayscale':
mapTypeId = Microsoft.Maps.MapTypeId.grayscale;
break;
case 'streetside':
mapTypeId = Microsoft.Maps.MapTypeId.streetside;
break;
default:
mapTypeId = Microsoft.Maps.MapTypeId.road;
}
map.setView({
mapTypeId: mapTypeId
});
}
function setZoom(z) {
map.setView({
zoom: z
});
}
function getZoom() {
return map.getZoom();
}
function setCenter(location) {
map.setView({
center: realLocation(location)
});
}
function getCenter() {
return [map.getCenter()
.latitude, map.getCenter()
.longitude
];
}
//视图的右上角和左下角纬度+经度
function getBounds() {
return map.getBounds()
.bounds;
}
function newPushpin(location, id, options) {
//options = {title: title,subTitle: subtitle,text: text, color: 'blue',icon: 'poi-custom.png',anchor: new Microsoft.Maps.Point(12, 39), draggable: draggable, };
var pin = new Microsoft.Maps.Pushpin(realLocation(location), options);
pin.id = id;
map.entities.push(pin);
Microsoft.Maps.Events.addHandler(pin, 'click', function(e) {
if (typeof(KevinkunBingMap) != "undefined") {
KevinkunBingMap.pushpinClicked(e.target.id, JSON.stringify([e.location.latitude, e.location.longitude]), JSON.stringify([e.point.x, e.point.y]));
}
console.log(e.target.id, JSON.stringify([e.location.latitude, e.location.longitude]), JSON.stringify([e.point.x, e.point.y]));
});
Microsoft.Maps.Events.addHandler(pin, 'dragend', function(e) {
if (typeof(KevinkunBingMap) != "undefined") {
KevinkunBingMap.pushpinDragEnd(e.target.id, JSON.stringify([e.location.latitude, e.location.longitude]), JSON.stringify([e.point.x, e.point.y]));
}
console.log(e.target.id, JSON.stringify([e.location.latitude, e.location.longitude]), JSON.stringify([e.point.x, e.point.y]));
});
}
function realLocation(location) {
return new Microsoft.Maps.Location(location[0], location[1]);
}
function newPolyline(locations, id, options) {
//options = { strokeColor: 'red',strokeThickness: 3, strokeDashArray: [10,10] };
var bingLocations = [];
for (var i = 0; i < locations.length; i++) {
bingLocations.push(realLocation(locations[i]));
}
var polyline = new Microsoft.Maps.Polyline(bingLocations, options);
polyline.id = id;
map.entities.push(polyline);
Microsoft.Maps.Events.addHandler(polyline, 'click', function(e) {
if (typeof(KevinkunBingMap) != "undefined") {
KevinkunBingMap.polylineClicked(e.target.id, JSON.stringify([e.location.latitude, e.location.longitude]), JSON.stringify([e.point.x, e.point.y]));
}
console.log(e.target.id, JSON.stringify([e.location.latitude, e.location.longitude]), JSON.stringify([e.point.x, e.point.y]));
});
}
function setPolylineLocation(locations, id) {
var bingLocations = [];
for (var i = 0; i < locations.length; i++) {
bingLocations.push(realLocation(locations[i]));
}
for (var i = map.entities.getLength() - 1; i >= 0; i--) {
var line = map.entities.get(i);
if (line.id == id) {
line.setLocations(bingLocations);
}
}
}
function newPolygon(locations, id, options) {
//options = { fillColor: '#ff000022', strokeColor: '#00ff00', strokeThickness: 4, strokeDashArray: [10,5] };
var bingLocations = [];
for (var i = 0; i < locations.length; i++) {
bingLocations.push(realLocation(locations[i]));
}
var polygon = new Microsoft.Maps.Polygon(bingLocations, options);
polygon.id = id;
map.entities.push(polygon);
Microsoft.Maps.Events.addHandler(polygon, 'click', function(e) {
if (typeof(KevinkunBingMap) != "undefined") {
KevinkunBingMap.polygonClicked(e.target.id, JSON.stringify([e.location.latitude, e.location.longitude]), JSON.stringify([e.point.x, e.point.y]));
}
console.log(e.target.id, JSON.stringify([e.location.latitude, e.location.longitude]), JSON.stringify([e.point.x, e.point.y]));
});
}
function newPolygonRegular(center, distance, sides, id, options, angle) {
//options = { fillColor: '#ff000022', strokeColor: '#00ff00', strokeThickness: 4, strokeDashArray: [10,5] };
Microsoft.Maps.loadModule('Microsoft.Maps.SpatialMath', function() {
var locations = Microsoft.Maps.SpatialMath.getRegularPolygon(realLocation(center), distance, sides, Microsoft.Maps.SpatialMath.DistanceUnits.Kilometers,angle);
var polygon = new Microsoft.Maps.Polygon(locations, options);
polygon.id = id;
map.entities.push(polygon);
Microsoft.Maps.Events.addHandler(polygon, 'click', function(e) {
if (typeof(KevinkunBingMap) != "undefined") {
KevinkunBingMap.polygonClicked(e.target.id, JSON.stringify([e.location.latitude, e.location.longitude]), JSON.stringify([e.point.x, e.point.y]));
}
console.log(e.target.id, JSON.stringify([e.location.latitude, e.location.longitude]), JSON.stringify([e.point.x, e.point.y]));
});
});
}
function showInfobox(location, title, description, actions) {
var options = {
location: realLocation(location),
title: title,
description: description,
//maxWidth: 500,
showCloseButton:true,
actions: null,
visible: true,
};
if (actions instanceof Array && actions.length > 0) {
var realActions = [];
for (var i = 0; i < actions.length; i++) {
var option = {};
option.label = actions[i];
option.eventHandler = function(e) {
if (typeof(KevinkunBingMap) != "undefined") {
KevinkunBingMap.actionClicked(e.srcElement.innerText);
}
console.log(e.srcElement.innerText);
//hideInfobox();
};
realActions.push(option);
}
options.actions = realActions;
}
infobox.setOptions(options);
}
function hideInfobox() {
infobox.setOptions({
visible: false
});
}
var directionsManager;
function calculateDirections(locations,mode) {
Microsoft.Maps.loadModule('Microsoft.Maps.Directions', function() {
directionsManager = new Microsoft.Maps.Directions.DirectionsManager(map);
// Set Route Mode to driving
var routeMode;
if (mode == 'walking'){
routeMode = Microsoft.Maps.Directions.RouteMode.walking;
}else if (mode == 'transit'){
routeMode = Microsoft.Maps.Directions.RouteMode.transit;
}else if (mode == 'truck'){
routeMode = Microsoft.Maps.Directions.RouteMode.truck;
}else {
routeMode = Microsoft.Maps.Directions.RouteMode.driving;
}
directionsManager.setRequestOptions({
distanceUnit: Microsoft.Maps.Directions.DistanceUnit.km,
routeMode: routeMode,
//routeDraggable: false,
});
for (var i = 0; i < locations.length; i++) {
var waypoint1 = new Microsoft.Maps.Directions.Waypoint({
address: "",
location: realLocation(locations[i])
});
directionsManager.addWaypoint(waypoint1);
}
// Set the element in which the itinerary will be rendered
directionsManager.setRenderOptions({ itineraryContainer: document.getElementById('printoutPanel') });
directionsManager.setRenderOptions({
drivingPolylineOptions: {
strokeColor: 'lightblue',
strokeThickness: 1
},
waypointPushpinOptions: {
title: ''
}
});
Microsoft.Maps.Events.addHandler(directionsManager, 'directionsError', directionsError);
Microsoft.Maps.Events.addHandler(directionsManager, 'directionsUpdated', directionsUpdated);
directionsManager.calculateDirections();
});
}
function directionsUpdated(e) {
console.log(e);
//Get the current route index.
var routeIdx = directionsManager.getRequestOptions()
.routeIndex;
var total = e.routeSummary.length;
//var options = [];
//for (var i = 0; i < e.routeSummary.length; i++) {
//var option = {};
//option.distance = e.route[routeIdx].distance;
//option.time = e.routeSummary[routeIdx].time;
//option.timeWithTraffic = e.routeSummary[routeIdx].timeWithTraffic;
//options.push(option);
//}
if (typeof(KevinkunBingMap) != "undefined") {
KevinkunBingMap.directionsUpdated(total, routeIdx+1, JSON.stringify(e.route[routeIdx]));
}
console.log(total, routeIdx+1, e.route[routeIdx]);
}
function directionsError(e) {
if (typeof(KevinkunBingMap) != "undefined") {
KevinkunBingMap.directionsError(JSON.stringify(e));
}
console.log(e);
}
function clearRoute() {
directionsManager.clearAll();
}
function remove(id) {
for (var i = map.entities.getLength() - 1; i >= 0; i--) {
var pin = map.entities.get(i);
if (pin.id == id) {
map.entities.removeAt(i);
}
}
}
function removeAll() {
map.entities.clear();
}
function getAddress(location) {
Microsoft.Maps.loadModule('Microsoft.Maps.Search', function() {
var searchManager = new Microsoft.Maps.Search.SearchManager(map);
var reverseGeocodeRequestOptions = {
location: realLocation(location),
callback: function(answer, userData) {
var ad = answer.address.formattedAddress;
if (typeof(KevinkunBingMap) != "undefined") {
KevinkunBingMap.gotAddress(ad);
}
console.log(ad);
}
};
searchManager.reverseGeocode(reverseGeocodeRequestOptions);
});
}
function getLocation(address) {
Microsoft.Maps.loadModule('Microsoft.Maps.Search', function() {
var searchManager = new Microsoft.Maps.Search.SearchManager(map);
var requestOptions = {
//bounds: map.getBounds(),
where: address,
callback: function(answer, userData) {
var result = [];
for (var i = 0; i < answer.results.length; i++) {
result.push([answer.results[i].name, [answer.results[i].location.latitude, answer.results[i].location.longitude]]);
}
if (typeof(KevinkunBingMap) != "undefined") {
KevinkunBingMap.gotLocation(JSON.stringify(result));
}
console.log(result);
}
};
searchManager.geocode(requestOptions);
});
}
function getDistance(location1, location2) {
Microsoft.Maps.loadModule('Microsoft.Maps.SpatialMath', function() {
var dis = Microsoft.Maps.SpatialMath.getDistanceTo(realLocation(location1), realLocation(location2), Microsoft.Maps.SpatialMath.DistanceUnits.Kilometers);
if (typeof(KevinkunBingMap) != "undefined") {
KevinkunBingMap.gotDistance(dis);
}
console.log(dis);
});
}
function loadJS() {
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = 'http://www.bing.com/api/maps/mapcontrol?callback=GetMap&key=' + key;
script.async = true;
script.defer = true;
document.getElementsByTagName('head')[0].appendChild(script);
}
function getQueryVariable(variable) {
var query = window.location.search.substring(1);
var vars = query.split("&");
for (var i = 0; i < vars.length; i++) {
var pair = vars[i].split("=");
if (pair[0] == variable) {
return pair[1];
}
}
return (false);
}
var watchId;
function startTracking() {
watchId = navigator.geolocation.watchPosition(function(position) {
var loc = [ position.coords.latitude, position.coords.longitude];
if (typeof(KevinkunBingMap) != "undefined") {
KevinkunBingMap.locationUpdated(JSON.stringify(loc));
}
console.log("locationUpdated", loc);
});
}
function stopTracking() {
// Cancel the geolocation updates.
navigator.geolocation.clearWatch(watchId);
}
//loadJS(getQueryVariable('key'));
//loadJS('AmxEDXs-Yhwj3Uv5WvVB4Q6YvISdMjqrC-pPOw0rNKMu_5rrksVmAJkpcv5HJwJS');
</script>
</head>
<body>
<div id='printoutPanel' style='display:none'></div>
<div id='myMap'></div>
</body>
</html>

Binary file not shown.

Before

Width:  |  Height:  |  Size: 894 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 889 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 839 B

File diff suppressed because one or more lines are too long

@ -1 +0,0 @@
[{"permissions":["android.permission.ACCESS_FINE_LOCATION"],"conditionalPermissions":{},"conditionalBroadcastReceivers":{},"libraries":[],"native":[],"broadcastReceiver":[],"assets":["pin3.png","pin2.png","bingmap.html","pin1.png"],"activities":[],"broadcastReceivers":[],"type":"cn.kevinkun.BingMap.BingMap","androidMinSdk":["7"]}]

@ -1 +0,0 @@
[{"categoryString":"EXTENSION","dateBuilt":"2023-09-21","nonVisible":"true","iconName":"https://res.cloudinary.com/andromedaviewflyvipul/image/upload/c_scale,h_20,w_20/v1571472765/ktvu4bapylsvnykoyhdm.png","methods":[{"deprecated":"false","name":"GetVoicesList","description":"Gets a list of voices in dictionary form","params":[]},{"deprecated":"false","name":"TextToSpeech","description":"Converts text to speech and saves audio file to output path","params":[{"name":"text","type":"text"},{"name":"outputhFile","type":"text"},{"name":"voiceName","type":"text"},{"name":"voiceGender","type":"text"},{"name":"voiceLang","type":"text"}]}],"blockProperties":[{"rw":"write-only","deprecated":"false","name":"ApiKey","description":"Set API key","type":"text"},{"rw":"write-only","deprecated":"false","name":"ResourceRegion","description":"Set resource region","type":"text"}],"helpUrl":"https://sunnythedeveloper.in/microsofttts-convert-text-to-audio-using-microsoft-texttospeech-api/","licenseName":"https://creativecommons.org/licenses/by-sa/4.0/","type":"com.sunny.tts.MicrosoftTTS","androidMinSdk":7,"versionName":"1","version":"4","external":"true","showOnPalette":"true","name":"MicrosoftTTS","helpString":"<p>Extension to convert Text to Speech using Microsoft Text-To-Speech API <br> Developed by Sunny Gupta<\/p>\n","events":[{"deprecated":"false","name":"GotVoicesList","description":"Event raised after gettting voices list. Each list element is a dictionary containing voice information.","params":[{"name":"reponseList","type":"list"}]},{"deprecated":"false","name":"GotError","description":"Event raised when error occurs","params":[{"name":"methodName","type":"text"},{"name":"errorMsg","type":"text"}]},{"deprecated":"false","name":"GotSpeechFile","description":"Event raised when text was successfully converted to audio and file was saved","params":[{"name":"outputFile","type":"text"}]}],"properties":[]}]

@ -1 +0,0 @@
[{"assets":[],"activities":[],"permissions":["android.permission.INTERNET"],"type":"com.sunny.tts.MicrosoftTTS","androidMinSdk":[7]}]

File diff suppressed because one or more lines are too long

@ -1,10 +0,0 @@
<xml xmlns="http://www.w3.org/1999/xhtml">
<block type="component_event" id="Nu],`$R_Zo+h]%t0u=E{" x="undefined" y="undefined">
<mutation component_type="Button" instance_name="按钮1" event_name="Click"></mutation>
<field name="COMPONENT_SELECTOR">按钮1</field>
<statement name="DO">
<block type="controls_closeScreen" id="_5tFHD60tzn_~.}x1DrY"></block>
</statement>
</block>
<yacodeblocks ya-version="172" language-version="22"></yacodeblocks>
</xml>

@ -1,41 +0,0 @@
<xml xmlns="http://www.w3.org/1999/xhtml">
<block type="component_set_get" id="D7C,mwN}q=UqZ*a5_PK=" x="-411" y="32">
<mutation component_type="Button" set_or_get="get" property_name="Enabled" is_generic="false" instance_name="按钮_避障"></mutation>
<field name="COMPONENT_SELECTOR">按钮_避障</field>
<field name="PROP">Enabled</field>
</block>
<block type="component_event" id="1E~cny;xyoBW`6/m=u_i" x="-415" y="87">
<mutation component_type="Button" instance_name="按钮_实时定位" event_name="Click"></mutation>
<field name="COMPONENT_SELECTOR">按钮_实时定位</field>
<statement name="DO">
<block type="controls_openAnotherScreen" id="$]%v|uY7Rfv~rk!)@z(3">
<value name="SCREEN">
<block type="text" id=".gh[SARAdd)M$4]M~[y%">
<field name="TEXT">dingwei</field>
</block>
</value>
</block>
</statement>
</block>
<block type="component_event" id="20%u[R^-3+ouiy8=/CZF" x="-420" y="187">
<mutation component_type="Button" instance_name="按钮_拨打电话" event_name="Click"></mutation>
<field name="COMPONENT_SELECTOR">按钮_拨打电话</field>
<statement name="DO">
<block type="controls_openAnotherScreen" id="JMzPot8U;!E~]~U4SNd+">
<value name="SCREEN">
<block type="text" id="rD6.uP~:nv;itN019[.z">
<field name="TEXT">calling</field>
</block>
</value>
</block>
</statement>
</block>
<block type="component_event" id="7H89A@N/?oES:zQX.*:v" x="-411" y="296">
<mutation component_type="Button" instance_name="按钮_关闭" event_name="Click"></mutation>
<field name="COMPONENT_SELECTOR">按钮_关闭</field>
<statement name="DO">
<block type="controls_closeScreen" id="r1-697xyD#}ga{a..=0l"></block>
</statement>
</block>
<yacodeblocks ya-version="172" language-version="22"></yacodeblocks>
</xml>

@ -1,4 +0,0 @@
#|
$JSON
{"authURL":["app.gzjkw.net","ai2.appinventor.mit.edu"],"YaVersion":"224","Source":"Form","Properties":{"$Name":"Screen1","$Type":"Form","$Version":"30","ActionBar":"True","AlignHorizontal":"3","AppName":"ruangong","ShowListsAsJson":"False","Theme":"AppTheme.Light.DarkActionBar","Title":"\u907f\u969c\u76d1\u6d4b","Uuid":"0","$Components":[{"$Name":"\u6c34\u5e73\u5e03\u5c404","$Type":"HorizontalArrangement","$Version":"4","AlignHorizontal":"3","Height":"378","Width":"-2","Uuid":"-1446214067","$Components":[{"$Name":"\u6309\u94ae_\u907f\u969c","$Type":"Button","$Version":"7","Text":"\u907f\u969c","Uuid":"-644814633"},{"$Name":"\u6309\u94ae_\u5b9e\u65f6\u5b9a\u4f4d","$Type":"Button","$Version":"7","Text":"\u5b9e\u65f6\u5b9a\u4f4d","Uuid":"-18939228"},{"$Name":"\u6309\u94ae_\u62e8\u6253\u7535\u8bdd","$Type":"Button","$Version":"7","Text":"\u62e8\u6253\u7535\u8bdd","Uuid":"2062084651"},{"$Name":"\u5217\u8868\u9009\u62e9\u6846_\u84dd\u7259","$Type":"ListPicker","$Version":"9","Text":"\u8fde\u63a5\u8bbe\u5907","Uuid":"-1183153014"}]},{"$Name":"\u6c34\u5e73\u5e03\u5c403","$Type":"HorizontalArrangement","$Version":"4","AlignHorizontal":"3","AlignVertical":"2","Uuid":"-2055779801","$Components":[{"$Name":"\u6807\u7b7e_\u8ddd\u79bb","$Type":"Label","$Version":"5","Text":"\u8ddd\u79bb\uff1a","Uuid":"1009622951"},{"$Name":"\u6587\u672c\u8f93\u5165\u6846_\u8ddd\u79bb","$Type":"TextBox","$Version":"6","ReadOnly":"True","Uuid":"-2128440146"},{"$Name":"\u64ad\u62a5","$Type":"CheckBox","$Version":"2","Text":"\u81ea\u52a8\u64ad\u62a5","Uuid":"405481945"}]},{"$Name":"\u5782\u76f4\u5e03\u5c401","$Type":"VerticalArrangement","$Version":"4","AlignHorizontal":"3","AlignVertical":"3","Height":"-1040","Width":"-2","Uuid":"2081953051","$Components":[{"$Name":"\u6c34\u5e73\u5e03\u5c402","$Type":"HorizontalArrangement","$Version":"4","AlignHorizontal":"3","AlignVertical":"2","Uuid":"177806287","$Components":[{"$Name":"\u6807\u7b7e_\u8ba1\u65f6","$Type":"Label","$Version":"5","Text":"\u8ba1\u65f6\uff1a","Uuid":"-911991431"},{"$Name":"\u6587\u672c\u8f93\u5165\u6846_\u8ba1\u65f6","$Type":"TextBox","$Version":"6","NumbersOnly":"True","Text":"1","Uuid":"-152203493"},{"$Name":"\u6309\u94ae2","$Type":"Button","$Version":"7","Text":"\u786e\u5b9a","Uuid":"-444567807"}]},{"$Name":"\u6c34\u5e73\u5e03\u5c405","$Type":"HorizontalArrangement","$Version":"4","AlignHorizontal":"2","AlignVertical":"3","Width":"-2","Uuid":"-1161251788","$Components":[{"$Name":"\u6309\u94ae_\u5173\u95ed","$Type":"Button","$Version":"7","Text":"\u5173\u95ed","Uuid":"1124974886"}]}]},{"$Name":"\u84dd\u7259\u5ba2\u6237\u7aef1","$Type":"BluetoothClient","$Version":"8","Uuid":"-1413619977"},{"$Name":"\u8ba1\u65f6\u56681","$Type":"Clock","$Version":"4","Uuid":"530919694"},{"$Name":"\u6587\u672c\u8bed\u97f3\u8f6c\u6362\u56681","$Type":"TextToSpeech","$Version":"6","Uuid":"-1761536897"},{"$Name":"\u77ed\u4fe1\u6536\u53d1\u56681","$Type":"Texting","$Version":"5","Uuid":"-1268134884"}]}}
|#

@ -1,4 +0,0 @@
#|
$JSON
{"authURL":["app.gzjkw.net"],"YaVersion":"172","Source":"Form","Properties":{"$Name":"Screen1","$Type":"Form","$Version":"23","AppName":"ruangong","Title":"Screen1","Uuid":"0","$Components":[{"$Name":"\u5217\u8868\u663e\u793a\u68461","$Type":"ListView","$Version":"5","Uuid":"1220671722"},{"$Name":"\u6309\u94ae1","$Type":"Button","$Version":"6","Text":"\u5173\u95ed","Uuid":"-644814633"}]}}
|#

@ -1,4 +0,0 @@
#|
$JSON
{"authURL":["app.gzjkw.net"],"YaVersion":"172","Source":"Form","Properties":{"$Name":"Screen1","$Type":"Form","$Version":"23","AlignHorizontal":"3","AlignVertical":"2","AppName":"ruangong","Title":"Screen1","Uuid":"0","$Components":[{"$Name":"\u6c34\u5e73\u5e03\u5c401","$Type":"HorizontalArrangement","$Version":"3","AlignHorizontal":"3","AlignVertical":"2","Uuid":"177113749","$Components":[{"$Name":"\u6309\u94ae_\u907f\u969c","$Type":"Button","$Version":"6","Text":"\u907f\u969c","Uuid":"-644814633"},{"$Name":"\u6309\u94ae_\u5b9e\u65f6\u5b9a\u4f4d","$Type":"Button","$Version":"6","Text":"\u5b9e\u65f6\u5b9a\u4f4d","Uuid":"-18939228"},{"$Name":"\u6309\u94ae_\u62e8\u6253\u7535\u8bdd","$Type":"Button","$Version":"6","Text":"\u62e8\u6253\u7535\u8bdd","Uuid":"2062084651"}]},{"$Name":"\u5782\u76f4\u5e03\u5c401","$Type":"VerticalArrangement","$Version":"3","AlignHorizontal":"2","AlignVertical":"2","Uuid":"-1007398740","$Components":[{"$Name":"\u6c34\u5e73\u5e03\u5c402","$Type":"HorizontalArrangement","$Version":"3","Uuid":"177806287","$Components":[{"$Name":"\u6807\u7b7e_\u8ba1\u65f6","$Type":"Label","$Version":"4","Text":"\u8ba1\u65f6\uff1a","Uuid":"-911991431"},{"$Name":"\u6587\u672c\u8f93\u5165\u6846_\u8ba1\u65f6","$Type":"TextBox","$Version":"5","Uuid":"-152203493"}]},{"$Name":"\u6c34\u5e73\u5e03\u5c403","$Type":"HorizontalArrangement","$Version":"3","Uuid":"-2055779801","$Components":[{"$Name":"\u6807\u7b7e_\u8ddd\u79bb","$Type":"Label","$Version":"4","Text":"\u8ddd\u79bb\uff1a","Uuid":"1009622951"},{"$Name":"\u6587\u672c\u8f93\u5165\u6846_\u8ddd\u79bb","$Type":"TextBox","$Version":"5","Uuid":"-2128440146"}]},{"$Name":"\u6309\u94ae_\u5173\u95ed","$Type":"Button","$Version":"6","Text":"\u5173\u95ed","Uuid":"1124974886"}]}]}}
|#

File diff suppressed because one or more lines are too long

@ -1,4 +0,0 @@
#|
$JSON
{"authURL":["app.gzjkw.net","ai2.appinventor.mit.edu"],"YaVersion":"224","Source":"Form","Properties":{"$Name":"calling","$Type":"Form","$Version":"30","ActionBar":"True","AlignHorizontal":"3","AppName":"ruangong","ShowListsAsJson":"False","Theme":"AppTheme.Light.DarkActionBar","Title":"\u62e8\u6253\u7535\u8bdd","Uuid":"0","$Components":[{"$Name":"\u6c34\u5e73\u5e03\u5c401","$Type":"HorizontalArrangement","$Version":"4","AlignHorizontal":"3","Height":"-1040","Width":"-2","Uuid":"497758912","$Components":[{"$Name":"\u6309\u94ae_\u907f\u969c","$Type":"Button","$Version":"7","Text":"\u907f\u969c","Uuid":"-1955423566"},{"$Name":"\u6309\u94ae_\u5b9e\u65f6\u5b9a\u4f4d","$Type":"Button","$Version":"7","Text":"\u5b9e\u65f6\u5b9a\u4f4d","Uuid":"479692292"},{"$Name":"\u6309\u94ae_\u62e8\u6253\u7535\u8bdd","$Type":"Button","$Version":"7","Text":"\u62e8\u6253\u7535\u8bdd","Uuid":"-1181431767"}]},{"$Name":"\u5782\u76f4\u5e03\u5c401","$Type":"VerticalArrangement","$Version":"4","AlignHorizontal":"3","AlignVertical":"2","Uuid":"-1614689866","$Components":[{"$Name":"\u5217\u8868\u9009\u62e9\u6846_\u7535\u8bdd\u5217\u8868","$Type":"ListPicker","$Version":"9","ElementsFromString":"123,19968538899","Text":"\u9009\u62e9\u7d27\u6025\u8054\u7cfb\u4eba","Uuid":"-1795360827"}]},{"$Name":"\u6c34\u5e73\u5e03\u5c402","$Type":"HorizontalArrangement","$Version":"4","AlignHorizontal":"2","AlignVertical":"3","Height":"-1040","Width":"-2","Uuid":"923044023","$Components":[{"$Name":"\u6309\u94ae_\u5173\u95ed","$Type":"Button","$Version":"7","Text":"\u5173\u95ed","Uuid":"2024754233"}]},{"$Name":"\u7535\u8bdd\u62e8\u53f7\u5668_\u62e8\u6253\u7535\u8bdd","$Type":"PhoneCall","$Version":"3","Uuid":"-1369827363"}]}}
|#

File diff suppressed because one or more lines are too long

@ -1,41 +0,0 @@
<xml xmlns="http://www.w3.org/1999/xhtml">
<block type="component_event" id="l0r/-ENMfb_}qL~ed0!E" x="-472" y="-89">
<mutation component_type="Button" instance_name="按钮_避障" event_name="Click"></mutation>
<field name="COMPONENT_SELECTOR">按钮_避障</field>
<statement name="DO">
<block type="controls_openAnotherScreen" id="=fZ9R$eQnx9W=T/0WSns">
<value name="SCREEN">
<block type="text" id="9b{~^NYOdkLaS]=}B?0n">
<field name="TEXT">Screen1</field>
</block>
</value>
</block>
</statement>
</block>
<block type="component_set_get" id="]6?;)6zP7hTG8D.)LDl$" x="-468" y="8">
<mutation component_type="Button" set_or_get="get" property_name="Enabled" is_generic="false" instance_name="按钮_实时定位"></mutation>
<field name="COMPONENT_SELECTOR">按钮_实时定位</field>
<field name="PROP">Enabled</field>
</block>
<block type="component_event" id="20%u[R^-3+ouiy8=/CZF" x="-475" y="56">
<mutation component_type="Button" instance_name="按钮_拨打电话" event_name="Click"></mutation>
<field name="COMPONENT_SELECTOR">按钮_拨打电话</field>
<statement name="DO">
<block type="controls_openAnotherScreen" id="JMzPot8U;!E~]~U4SNd+">
<value name="SCREEN">
<block type="text" id="rD6.uP~:nv;itN019[.z">
<field name="TEXT">calling</field>
</block>
</value>
</block>
</statement>
</block>
<block type="component_event" id="7H89A@N/?oES:zQX.*:v" x="-472" y="152">
<mutation component_type="Button" instance_name="按钮_关闭" event_name="Click"></mutation>
<field name="COMPONENT_SELECTOR">按钮_关闭</field>
<statement name="DO">
<block type="controls_closeScreen" id="r1-697xyD#}ga{a..=0l"></block>
</statement>
</block>
<yacodeblocks ya-version="172" language-version="22"></yacodeblocks>
</xml>

@ -1,4 +0,0 @@
#|
$JSON
{"authURL":["app.gzjkw.net","ai2.appinventor.mit.edu"],"YaVersion":"224","Source":"Form","Properties":{"$Name":"dingwei","$Type":"Form","$Version":"30","ActionBar":"True","AlignHorizontal":"3","AppName":"ruangong","ShowListsAsJson":"False","Theme":"AppTheme.Light.DarkActionBar","Title":"\u5b9e\u65f6\u5b9a\u4f4d","Uuid":"0","$Components":[{"$Name":"\u6c34\u5e73\u5e03\u5c401","$Type":"HorizontalArrangement","$Version":"4","AlignHorizontal":"3","AlignVertical":"2","Uuid":"-655869917","$Components":[{"$Name":"\u6309\u94ae_\u907f\u969c","$Type":"Button","$Version":"7","Text":"\u907f\u969c","Uuid":"1440681744"},{"$Name":"\u6309\u94ae_\u5b9e\u65f6\u5b9a\u4f4d","$Type":"Button","$Version":"7","Text":"\u5b9e\u65f6\u5b9a\u4f4d","Uuid":"652290387"},{"$Name":"\u6309\u94ae_\u62e8\u6253\u7535\u8bdd","$Type":"Button","$Version":"7","Text":"\u62e8\u6253\u7535\u8bdd","Uuid":"1956743508"},{"$Name":"\u5217\u8868\u9009\u62e9\u6846_\u84dd\u7259","$Type":"ListPicker","$Version":"9","Text":"\u8fde\u63a5\u8bbe\u5907","Uuid":"1464195969"}]},{"$Name":"\u6c34\u5e73\u5e03\u5c403","$Type":"HorizontalArrangement","$Version":"4","AlignHorizontal":"3","AlignVertical":"2","Height":"-1060","Width":"-2","Uuid":"1743176679","$Components":[{"$Name":"Web\u6d4f\u89c8\u68461","$Type":"WebViewer","$Version":"10","Uuid":"177751501"}]},{"$Name":"\u6c34\u5e73\u5e03\u5c402","$Type":"HorizontalArrangement","$Version":"4","AlignHorizontal":"3","AlignVertical":"2","Uuid":"785425026","$Components":[{"$Name":"\u5237\u65b0","$Type":"Button","$Version":"7","Text":"\u5237\u65b0","Uuid":"-990679099"}]},{"$Name":"\u6c34\u5e73\u5e03\u5c404","$Type":"HorizontalArrangement","$Version":"4","AlignHorizontal":"2","AlignVertical":"3","Height":"-1020","Width":"-2","Uuid":"1670022820","$Components":[{"$Name":"\u6309\u94ae_\u5173\u95ed","$Type":"Button","$Version":"7","Text":"\u5173\u95ed","Uuid":"-1949803666"}]},{"$Name":"\u84dd\u7259\u5ba2\u6237\u7aef1","$Type":"BluetoothClient","$Version":"8","Uuid":"985772490"},{"$Name":"\u8ba1\u65f6\u56681","$Type":"Clock","$Version":"4","TimerInterval":"40000","Uuid":"-415083639"},{"$Name":"\u4f4d\u7f6e\u4f20\u611f\u56681","$Type":"LocationSensor","$Version":"3","Uuid":"-939539378"},{"$Name":"Web\u5ba2\u6237\u7aef1","$Type":"Web","$Version":"8","Uuid":"-1721494346"},{"$Name":"\u77ed\u4fe1\u6536\u53d1\u56681","$Type":"Texting","$Version":"5","Uuid":"-459111995"}]}}
|#

@ -1,4 +0,0 @@
#|
$JSON
{"authURL":["app.gzjkw.net"],"YaVersion":"172","Source":"Form","Properties":{"$Name":"dingwei","$Type":"Form","$Version":"23","AlignHorizontal":"3","AlignVertical":"2","AppName":"ruangong","Title":"dingwei","Uuid":"0","$Components":[{"$Name":"\u6c34\u5e73\u5e03\u5c401","$Type":"HorizontalArrangement","$Version":"3","AlignHorizontal":"3","Uuid":"-655869917","$Components":[{"$Name":"\u6309\u94ae_\u907f\u969c","$Type":"Button","$Version":"6","Text":"\u907f\u969c","Uuid":"1440681744"},{"$Name":"\u6309\u94ae_\u5b9e\u65f6\u5b9a\u4f4d","$Type":"Button","$Version":"6","Text":"\u5b9e\u65f6\u5b9a\u4f4d","Uuid":"652290387"},{"$Name":"\u6309\u94ae_\u62e8\u6253\u7535\u8bdd","$Type":"Button","$Version":"6","Text":"\u62e8\u6253\u7535\u8bdd","Uuid":"1956743508"}]},{"$Name":"\u5782\u76f4\u5e03\u5c401","$Type":"VerticalArrangement","$Version":"3","AlignHorizontal":"2","Uuid":"525050555","$Components":[{"$Name":"\u6c34\u5e73\u5e03\u5c402","$Type":"HorizontalArrangement","$Version":"3","Uuid":"785425026","$Components":[{"$Name":"\u6807\u7b7e_\u8ba1\u65f6\u63d0\u793a","$Type":"Label","$Version":"4","Text":"\u8ba1\u65f6\uff1a","Uuid":"-1133475828"},{"$Name":"\u6587\u672c\u8f93\u5165\u6846_\u8ba1\u65f6","$Type":"TextBox","$Version":"5","Uuid":"2119337786"}]},{"$Name":"\u6309\u94ae_\u5173\u95ed","$Type":"Button","$Version":"6","Text":"\u5173\u95ed","Uuid":"139342436"}]}]}}
|#

@ -1,19 +0,0 @@
#
#Tue Nov 14 13:34:00 UTC 2023
source=../src
name=ruangong
defaultfilescope=App
main=appinventor.ai_dustinzrm.ruangong.Screen1
color.accent=&HFFFF4081
sizing=Responsive
assets=../assets
theme=AppTheme.Light.DarkActionBar
showlistsasjson=False
useslocation=False
aname=ruangong
actionbar=True
color.primary=&HFF3F51B5
build=../build
versionname=1.0
versioncode=1
color.primary.dark=&HFF303F9F

@ -1,225 +0,0 @@
/*
Arduino.h - Main include file for the Arduino SDK
Copyright (c) 2005-2013 Arduino Team. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef Arduino_h
#define Arduino_h
#include <stdbool.h>
#include <stdint.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "esp_arduino_version.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp32-hal.h"
#include "esp8266-compat.h"
#include "soc/gpio_reg.h"
#include "stdlib_noniso.h"
#include "binary.h"
#define PI 3.1415926535897932384626433832795
#define HALF_PI 1.5707963267948966192313216916398
#define TWO_PI 6.283185307179586476925286766559
#define DEG_TO_RAD 0.017453292519943295769236907684886
#define RAD_TO_DEG 57.295779513082320876798154814105
#define EULER 2.718281828459045235360287471352
#define SERIAL 0x0
#define DISPLAY 0x1
#define LSBFIRST 0
#define MSBFIRST 1
//Interrupt Modes
#define RISING 0x01
#define FALLING 0x02
#define CHANGE 0x03
#define ONLOW 0x04
#define ONHIGH 0x05
#define ONLOW_WE 0x0C
#define ONHIGH_WE 0x0D
#define DEFAULT 1
#define EXTERNAL 0
#ifndef __STRINGIFY
#define __STRINGIFY(a) #a
#endif
// can't define max() / min() because of conflicts with C++
#define _min(a,b) ((a)<(b)?(a):(b))
#define _max(a,b) ((a)>(b)?(a):(b))
#define _abs(x) ((x)>0?(x):-(x)) // abs() comes from STL
#define constrain(amt,low,high) ((amt)<(low)?(low):((amt)>(high)?(high):(amt)))
#define _round(x) ((x)>=0?(long)((x)+0.5):(long)((x)-0.5)) // round() comes from STL
#define radians(deg) ((deg)*DEG_TO_RAD)
#define degrees(rad) ((rad)*RAD_TO_DEG)
#define sq(x) ((x)*(x))
// ESP32xx runs FreeRTOS... disabling interrupts can lead to issues, such as Watchdog Timeout
#define sei() portENABLE_INTERRUPTS()
#define cli() portDISABLE_INTERRUPTS()
#define interrupts() sei()
#define noInterrupts() cli()
#define clockCyclesPerMicrosecond() ( (long int)getCpuFrequencyMhz() )
#define clockCyclesToMicroseconds(a) ( (a) / clockCyclesPerMicrosecond() )
#define microsecondsToClockCycles(a) ( (a) * clockCyclesPerMicrosecond() )
#define lowByte(w) ((uint8_t) ((w) & 0xff))
#define highByte(w) ((uint8_t) ((w) >> 8))
#define bitRead(value, bit) (((value) >> (bit)) & 0x01)
#define bitSet(value, bit) ((value) |= (1UL << (bit)))
#define bitClear(value, bit) ((value) &= ~(1UL << (bit)))
#define bitToggle(value, bit) ((value) ^= (1UL << (bit)))
#define bitWrite(value, bit, bitvalue) ((bitvalue) ? bitSet(value, bit) : bitClear(value, bit))
// avr-libc defines _NOP() since 1.6.2
#ifndef _NOP
#define _NOP() do { __asm__ volatile ("nop"); } while (0)
#endif
#define bit(b) (1UL << (b))
#define _BV(b) (1UL << (b))
#define digitalPinToTimer(pin) (0)
#define analogInPinToBit(P) (P)
#if SOC_GPIO_PIN_COUNT <= 32
#define digitalPinToPort(pin) (0)
#define digitalPinToBitMask(pin) (1UL << digitalPinToGPIONumber(pin))
#define portOutputRegister(port) ((volatile uint32_t*)GPIO_OUT_REG)
#define portInputRegister(port) ((volatile uint32_t*)GPIO_IN_REG)
#define portModeRegister(port) ((volatile uint32_t*)GPIO_ENABLE_REG)
#elif SOC_GPIO_PIN_COUNT <= 64
#define digitalPinToPort(pin) ((digitalPinToGPIONumber(pin)>31)?1:0)
#define digitalPinToBitMask(pin) (1UL << (digitalPinToGPIONumber(pin)&31))
#define portOutputRegister(port) ((volatile uint32_t*)((port)?GPIO_OUT1_REG:GPIO_OUT_REG))
#define portInputRegister(port) ((volatile uint32_t*)((port)?GPIO_IN1_REG:GPIO_IN_REG))
#define portModeRegister(port) ((volatile uint32_t*)((port)?GPIO_ENABLE1_REG:GPIO_ENABLE_REG))
#else
#error SOC_GPIO_PIN_COUNT > 64 not implemented
#endif
#define NOT_A_PIN -1
#define NOT_A_PORT -1
#define NOT_AN_INTERRUPT -1
#define NOT_ON_TIMER 0
typedef bool boolean;
typedef uint8_t byte;
typedef unsigned int word;
#ifdef __cplusplus
void setup(void);
void loop(void);
// The default is using Real Hardware random number generator
// But when randomSeed() is called, it turns to Psedo random
// generator, exactly as done in Arduino mainstream
long random(long);
long random(long, long);
// Calling randomSeed() will make random()
// using pseudo random like in Arduino
void randomSeed(unsigned long);
// Allow the Application to decide if the random generator
// will use Real Hardware random generation (true - default)
// or Pseudo random generation (false) as in Arduino MainStream
void useRealRandomGenerator(bool useRandomHW);
#endif
long map(long, long, long, long, long);
#ifdef __cplusplus
extern "C" {
#endif
void init(void);
void initVariant(void);
void initArduino(void);
unsigned long pulseIn(uint8_t pin, uint8_t state, unsigned long timeout);
unsigned long pulseInLong(uint8_t pin, uint8_t state, unsigned long timeout);
uint8_t shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder);
void shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t val);
#ifdef __cplusplus
}
#include <algorithm>
#include <cmath>
#include "WCharacter.h"
#include "WString.h"
#include "Stream.h"
#include "Printable.h"
#include "Print.h"
#include "IPAddress.h"
#include "Client.h"
#include "Server.h"
#include "Udp.h"
#include "HardwareSerial.h"
#include "Esp.h"
#include "esp32/spiram.h"
// Use float-compatible stl abs() and round(), we don't use Arduino macros to avoid issues with the C++ libraries
using std::abs;
using std::isinf;
using std::isnan;
using std::max;
using std::min;
using std::round;
uint16_t makeWord(uint16_t w);
uint16_t makeWord(uint8_t h, uint8_t l);
#define word(...) makeWord(__VA_ARGS__)
size_t getArduinoLoopTaskStackSize(void);
#define SET_LOOP_TASK_STACK_SIZE(sz) size_t getArduinoLoopTaskStackSize() { return sz;}
// allows user to bypass esp_spiram_test()
#define BYPASS_SPIRAM_TEST(bypass) bool testSPIRAM(void) { if (bypass) return true; else return esp_spiram_test(); }
unsigned long pulseIn(uint8_t pin, uint8_t state, unsigned long timeout = 1000000L);
unsigned long pulseInLong(uint8_t pin, uint8_t state, unsigned long timeout = 1000000L);
extern "C" bool getLocalTime(struct tm * info, uint32_t ms = 5000);
extern "C" void configTime(long gmtOffset_sec, int daylightOffset_sec,
const char* server1, const char* server2 = nullptr, const char* server3 = nullptr);
extern "C" void configTzTime(const char* tz,
const char* server1, const char* server2 = nullptr, const char* server3 = nullptr);
void setToneChannel(uint8_t channel = 0);
void tone(uint8_t _pin, unsigned int frequency, unsigned long duration = 0);
void noTone(uint8_t _pin);
#endif /* __cplusplus */
#include "pins_arduino.h"
#include "io_pin_remap.h"
#endif /* _ESP32_CORE_ARDUINO_H_ */

@ -1,48 +0,0 @@
/*
Client.h - Base class that provides Client
Copyright (c) 2011 Adrian McEwen. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef client_h
#define client_h
#include "Print.h"
#include "Stream.h"
#include "IPAddress.h"
class Client: public Stream
{
public:
virtual int connect(IPAddress ip, uint16_t port) =0;
virtual int connect(const char *host, uint16_t port) =0;
virtual size_t write(uint8_t) =0;
virtual size_t write(const uint8_t *buf, size_t size) =0;
virtual int available() = 0;
virtual int read() = 0;
virtual int read(uint8_t *buf, size_t size) = 0;
virtual int peek() = 0;
virtual void flush() = 0;
virtual void stop() = 0;
virtual uint8_t connected() = 0;
virtual operator bool() = 0;
protected:
uint8_t* rawIPAddress(IPAddress& addr)
{
return addr.raw_address();
}
};
#endif

@ -1,450 +0,0 @@
/*
Esp.cpp - ESP31B-specific APIs
Copyright (c) 2015 Ivan Grokhotkov. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "Arduino.h"
#include "Esp.h"
#include "esp_sleep.h"
#include "esp_spi_flash.h"
#include <memory>
#include <soc/soc.h>
#include <esp_partition.h>
extern "C" {
#include "esp_ota_ops.h"
#include "esp_image_format.h"
}
#include <MD5Builder.h>
#include "soc/spi_reg.h"
#include "esp_system.h"
#ifdef ESP_IDF_VERSION_MAJOR // IDF 4+
#if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4
#include "esp32/rom/spi_flash.h"
#include "soc/efuse_reg.h"
#define ESP_FLASH_IMAGE_BASE 0x1000 // Flash offset containing flash size and spi mode
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/spi_flash.h"
#include "soc/efuse_reg.h"
#define ESP_FLASH_IMAGE_BASE 0x1000
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/spi_flash.h"
#include "soc/efuse_reg.h"
#define ESP_FLASH_IMAGE_BASE 0x0000 // Esp32s3 is located at 0x0000
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/rom/spi_flash.h"
#define ESP_FLASH_IMAGE_BASE 0x0000 // Esp32c3 is located at 0x0000
#else
#error Target CONFIG_IDF_TARGET is not supported
#endif
#else // ESP32 Before IDF 4.0
#include "rom/spi_flash.h"
#define ESP_FLASH_IMAGE_BASE 0x1000
#endif
// REG_SPI_BASE is not defined for S3/C3 ??
#if CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32C3
#ifndef REG_SPI_BASE
#define REG_SPI_BASE(i) (DR_REG_SPI1_BASE + (((i)>1) ? (((i)* 0x1000) + 0x20000) : (((~(i)) & 1)* 0x1000 )))
#endif // REG_SPI_BASE
#endif // TARGET
/**
* User-defined Literals
* usage:
*
* uint32_t = test = 10_MHz; // --> 10000000
*/
unsigned long long operator"" _kHz(unsigned long long x)
{
return x * 1000;
}
unsigned long long operator"" _MHz(unsigned long long x)
{
return x * 1000 * 1000;
}
unsigned long long operator"" _GHz(unsigned long long x)
{
return x * 1000 * 1000 * 1000;
}
unsigned long long operator"" _kBit(unsigned long long x)
{
return x * 1024;
}
unsigned long long operator"" _MBit(unsigned long long x)
{
return x * 1024 * 1024;
}
unsigned long long operator"" _GBit(unsigned long long x)
{
return x * 1024 * 1024 * 1024;
}
unsigned long long operator"" _kB(unsigned long long x)
{
return x * 1024;
}
unsigned long long operator"" _MB(unsigned long long x)
{
return x * 1024 * 1024;
}
unsigned long long operator"" _GB(unsigned long long x)
{
return x * 1024 * 1024 * 1024;
}
EspClass ESP;
void EspClass::deepSleep(uint32_t time_us)
{
esp_deep_sleep(time_us);
}
void EspClass::restart(void)
{
esp_restart();
}
uint32_t EspClass::getHeapSize(void)
{
multi_heap_info_t info;
heap_caps_get_info(&info, MALLOC_CAP_INTERNAL);
return info.total_free_bytes + info.total_allocated_bytes;
}
uint32_t EspClass::getFreeHeap(void)
{
return heap_caps_get_free_size(MALLOC_CAP_INTERNAL);
}
uint32_t EspClass::getMinFreeHeap(void)
{
return heap_caps_get_minimum_free_size(MALLOC_CAP_INTERNAL);
}
uint32_t EspClass::getMaxAllocHeap(void)
{
return heap_caps_get_largest_free_block(MALLOC_CAP_INTERNAL);
}
uint32_t EspClass::getPsramSize(void)
{
if(psramFound()){
multi_heap_info_t info;
heap_caps_get_info(&info, MALLOC_CAP_SPIRAM);
return info.total_free_bytes + info.total_allocated_bytes;
}
return 0;
}
uint32_t EspClass::getFreePsram(void)
{
if(psramFound()){
return heap_caps_get_free_size(MALLOC_CAP_SPIRAM);
}
return 0;
}
uint32_t EspClass::getMinFreePsram(void)
{
if(psramFound()){
return heap_caps_get_minimum_free_size(MALLOC_CAP_SPIRAM);
}
return 0;
}
uint32_t EspClass::getMaxAllocPsram(void)
{
if(psramFound()){
return heap_caps_get_largest_free_block(MALLOC_CAP_SPIRAM);
}
return 0;
}
static uint32_t sketchSize(sketchSize_t response) {
esp_image_metadata_t data;
const esp_partition_t *running = esp_ota_get_running_partition();
if (!running) return 0;
const esp_partition_pos_t running_pos = {
.offset = running->address,
.size = running->size,
};
data.start_addr = running_pos.offset;
esp_image_verify(ESP_IMAGE_VERIFY, &running_pos, &data);
if (response) {
return running_pos.size - data.image_len;
} else {
return data.image_len;
}
}
uint32_t EspClass::getSketchSize () {
return sketchSize(SKETCH_SIZE_TOTAL);
}
String EspClass::getSketchMD5()
{
static String result;
if (result.length()) {
return result;
}
uint32_t lengthLeft = getSketchSize();
const esp_partition_t *running = esp_ota_get_running_partition();
if (!running) {
log_e("Partition could not be found");
return String();
}
const size_t bufSize = SPI_FLASH_SEC_SIZE;
std::unique_ptr<uint8_t[]> buf(new uint8_t[bufSize]);
uint32_t offset = 0;
if(!buf.get()) {
log_e("Not enough memory to allocate buffer");
return String();
}
MD5Builder md5;
md5.begin();
while( lengthLeft > 0) {
size_t readBytes = (lengthLeft < bufSize) ? lengthLeft : bufSize;
if (!ESP.flashRead(running->address + offset, reinterpret_cast<uint32_t*>(buf.get()), (readBytes + 3) & ~3)) {
log_e("Could not read buffer from flash");
return String();
}
md5.add(buf.get(), readBytes);
lengthLeft -= readBytes;
offset += readBytes;
}
md5.calculate();
result = md5.toString();
return result;
}
uint32_t EspClass::getFreeSketchSpace () {
const esp_partition_t* _partition = esp_ota_get_next_update_partition(NULL);
if(!_partition){
return 0;
}
return _partition->size;
}
uint8_t EspClass::getChipRevision(void)
{
esp_chip_info_t chip_info;
esp_chip_info(&chip_info);
return chip_info.revision;
}
const char * EspClass::getChipModel(void)
{
#if CONFIG_IDF_TARGET_ESP32
uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG);
uint32_t pkg_ver = chip_ver & 0x7;
switch (pkg_ver) {
case EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ6 :
if (getChipRevision() == 3)
return "ESP32-D0WDQ6-V3";
else
return "ESP32-D0WDQ6";
case EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ5 :
if (getChipRevision() == 3)
return "ESP32-D0WD-V3";
else
return "ESP32-D0WD";
case EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5 :
return "ESP32-D2WD";
case EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2 :
return "ESP32-PICO-D2";
case EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4 :
return "ESP32-PICO-D4";
case EFUSE_RD_CHIP_VER_PKG_ESP32PICOV302 :
return "ESP32-PICO-V3-02";
case EFUSE_RD_CHIP_VER_PKG_ESP32D0WDR2V3 :
return "ESP32-D0WDR2-V3";
default:
return "Unknown";
}
#elif CONFIG_IDF_TARGET_ESP32S2
uint32_t pkg_ver = REG_GET_FIELD(EFUSE_RD_MAC_SPI_SYS_3_REG, EFUSE_PKG_VERSION);
switch (pkg_ver) {
case 0:
return "ESP32-S2";
case 1:
return "ESP32-S2FH16";
case 2:
return "ESP32-S2FH32";
default:
return "ESP32-S2 (Unknown)";
}
#elif CONFIG_IDF_TARGET_ESP32S3
return "ESP32-S3";
#elif CONFIG_IDF_TARGET_ESP32C3
return "ESP32-C3";
#endif
}
uint8_t EspClass::getChipCores(void)
{
esp_chip_info_t chip_info;
esp_chip_info(&chip_info);
return chip_info.cores;
}
const char * EspClass::getSdkVersion(void)
{
return esp_get_idf_version();
}
uint32_t ESP_getFlashChipId(void)
{
uint32_t id = g_rom_flashchip.device_id;
id = ((id & 0xff) << 16) | ((id >> 16) & 0xff) | (id & 0xff00);
return id;
}
uint32_t EspClass::getFlashChipSize(void)
{
uint32_t id = (ESP_getFlashChipId() >> 16) & 0xFF;
return 2 << (id - 1);
}
uint32_t EspClass::getFlashChipSpeed(void)
{
esp_image_header_t fhdr;
if(flashRead(ESP_FLASH_IMAGE_BASE, (uint32_t*)&fhdr, sizeof(esp_image_header_t)) && fhdr.magic != ESP_IMAGE_HEADER_MAGIC) {
return 0;
}
return magicFlashChipSpeed(fhdr.spi_speed);
}
FlashMode_t EspClass::getFlashChipMode(void)
{
#if CONFIG_IDF_TARGET_ESP32S2
uint32_t spi_ctrl = REG_READ(PERIPHS_SPI_FLASH_CTRL);
#else
uint32_t spi_ctrl = REG_READ(SPI_CTRL_REG(0));
#endif
/* Not all of the following constants are already defined in older versions of spi_reg.h, so do it manually for now*/
if (spi_ctrl & BIT(24)) { //SPI_FREAD_QIO
return (FM_QIO);
} else if (spi_ctrl & BIT(20)) { //SPI_FREAD_QUAD
return (FM_QOUT);
} else if (spi_ctrl & BIT(23)) { //SPI_FREAD_DIO
return (FM_DIO);
} else if (spi_ctrl & BIT(14)) { // SPI_FREAD_DUAL
return (FM_DOUT);
} else if (spi_ctrl & BIT(13)) { //SPI_FASTRD_MODE
return (FM_FAST_READ);
} else {
return (FM_SLOW_READ);
}
return (FM_DOUT);
}
uint32_t EspClass::magicFlashChipSize(uint8_t byte)
{
switch(byte & 0x0F) {
case 0x0: // 8 MBit (1MB)
return (1_MB);
case 0x1: // 16 MBit (2MB)
return (2_MB);
case 0x2: // 32 MBit (4MB)
return (4_MB);
case 0x3: // 64 MBit (8MB)
return (8_MB);
case 0x4: // 128 MBit (16MB)
return (16_MB);
default: // fail?
return 0;
}
}
uint32_t EspClass::magicFlashChipSpeed(uint8_t byte)
{
switch(byte & 0x0F) {
case 0x0: // 40 MHz
return (40_MHz);
case 0x1: // 26 MHz
return (26_MHz);
case 0x2: // 20 MHz
return (20_MHz);
case 0xf: // 80 MHz
return (80_MHz);
default: // fail?
return 0;
}
}
FlashMode_t EspClass::magicFlashChipMode(uint8_t byte)
{
FlashMode_t mode = (FlashMode_t) byte;
if(mode > FM_SLOW_READ) {
mode = FM_UNKNOWN;
}
return mode;
}
bool EspClass::flashEraseSector(uint32_t sector)
{
return spi_flash_erase_sector(sector) == ESP_OK;
}
// Warning: These functions do not work with encrypted flash
bool EspClass::flashWrite(uint32_t offset, uint32_t *data, size_t size)
{
return spi_flash_write(offset, (uint32_t*) data, size) == ESP_OK;
}
bool EspClass::flashRead(uint32_t offset, uint32_t *data, size_t size)
{
return spi_flash_read(offset, (uint32_t*) data, size) == ESP_OK;
}
bool EspClass::partitionEraseRange(const esp_partition_t *partition, uint32_t offset, size_t size)
{
return esp_partition_erase_range(partition, offset, size) == ESP_OK;
}
bool EspClass::partitionWrite(const esp_partition_t *partition, uint32_t offset, uint32_t *data, size_t size)
{
return esp_partition_write(partition, offset, data, size) == ESP_OK;
}
bool EspClass::partitionRead(const esp_partition_t *partition, uint32_t offset, uint32_t *data, size_t size)
{
return esp_partition_read(partition, offset, data, size) == ESP_OK;
}
uint64_t EspClass::getEfuseMac(void)
{
uint64_t _chipmacid = 0LL;
esp_efuse_mac_get_default((uint8_t*) (&_chipmacid));
return _chipmacid;
}

@ -1,119 +0,0 @@
/*
Esp.h - ESP31B-specific APIs
Copyright (c) 2015 Ivan Grokhotkov. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef ESP_H
#define ESP_H
#include <Arduino.h>
#include <esp_partition.h>
#include <hal/cpu_hal.h>
/**
* AVR macros for WDT managment
*/
typedef enum {
WDTO_0MS = 0, //!< WDTO_0MS
WDTO_15MS = 15, //!< WDTO_15MS
WDTO_30MS = 30, //!< WDTO_30MS
WDTO_60MS = 60, //!< WDTO_60MS
WDTO_120MS = 120, //!< WDTO_120MS
WDTO_250MS = 250, //!< WDTO_250MS
WDTO_500MS = 500, //!< WDTO_500MS
WDTO_1S = 1000,//!< WDTO_1S
WDTO_2S = 2000,//!< WDTO_2S
WDTO_4S = 4000,//!< WDTO_4S
WDTO_8S = 8000 //!< WDTO_8S
} WDTO_t;
typedef enum {
FM_QIO = 0x00,
FM_QOUT = 0x01,
FM_DIO = 0x02,
FM_DOUT = 0x03,
FM_FAST_READ = 0x04,
FM_SLOW_READ = 0x05,
FM_UNKNOWN = 0xff
} FlashMode_t;
typedef enum {
SKETCH_SIZE_TOTAL = 0,
SKETCH_SIZE_FREE = 1
} sketchSize_t;
class EspClass
{
public:
EspClass() {}
~EspClass() {}
void restart();
//Internal RAM
uint32_t getHeapSize(); //total heap size
uint32_t getFreeHeap(); //available heap
uint32_t getMinFreeHeap(); //lowest level of free heap since boot
uint32_t getMaxAllocHeap(); //largest block of heap that can be allocated at once
//SPI RAM
uint32_t getPsramSize();
uint32_t getFreePsram();
uint32_t getMinFreePsram();
uint32_t getMaxAllocPsram();
uint8_t getChipRevision();
const char * getChipModel();
uint8_t getChipCores();
uint32_t getCpuFreqMHz(){ return getCpuFrequencyMhz(); }
inline uint32_t getCycleCount() __attribute__((always_inline));
const char * getSdkVersion();
void deepSleep(uint32_t time_us);
uint32_t getFlashChipSize();
uint32_t getFlashChipSpeed();
FlashMode_t getFlashChipMode();
uint32_t magicFlashChipSize(uint8_t byte);
uint32_t magicFlashChipSpeed(uint8_t byte);
FlashMode_t magicFlashChipMode(uint8_t byte);
uint32_t getSketchSize();
String getSketchMD5();
uint32_t getFreeSketchSpace();
bool flashEraseSector(uint32_t sector);
bool flashWrite(uint32_t offset, uint32_t *data, size_t size);
bool flashRead(uint32_t offset, uint32_t *data, size_t size);
bool partitionEraseRange(const esp_partition_t *partition, uint32_t offset, size_t size);
bool partitionWrite(const esp_partition_t *partition, uint32_t offset, uint32_t *data, size_t size);
bool partitionRead(const esp_partition_t *partition, uint32_t offset, uint32_t *data, size_t size);
uint64_t getEfuseMac();
};
uint32_t ARDUINO_ISR_ATTR EspClass::getCycleCount()
{
return cpu_hal_get_cycle_count();
}
extern EspClass ESP;
#endif //ESP_H

@ -1,424 +0,0 @@
// Copyright 2015-2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "FirmwareMSC.h"
#if CONFIG_TINYUSB_MSC_ENABLED
#include <cstring>
#include "esp_partition.h"
#include "esp_ota_ops.h"
#include "esp32-hal.h"
#include "pins_arduino.h"
#include "firmware_msc_fat.h"
#ifndef USB_FW_MSC_VENDOR_ID
#define USB_FW_MSC_VENDOR_ID "ESP32" //max 8 chars
#endif
#ifndef USB_FW_MSC_PRODUCT_ID
#define USB_FW_MSC_PRODUCT_ID "Firmware MSC"//max 16 chars
#endif
#ifndef USB_FW_MSC_PRODUCT_REVISION
#define USB_FW_MSC_PRODUCT_REVISION "1.0" //max 4 chars
#endif
#ifndef USB_FW_MSC_VOLUME_NAME
#define USB_FW_MSC_VOLUME_NAME "ESP32-FWMSC" //max 11 chars
#endif
#ifndef USB_FW_MSC_SERIAL_NUMBER
#define USB_FW_MSC_SERIAL_NUMBER 0x00000000
#endif
ESP_EVENT_DEFINE_BASE(ARDUINO_FIRMWARE_MSC_EVENTS);
esp_err_t arduino_usb_event_post(esp_event_base_t event_base, int32_t event_id, void *event_data, size_t event_data_size, TickType_t ticks_to_wait);
esp_err_t arduino_usb_event_handler_register_with(esp_event_base_t event_base, int32_t event_id, esp_event_handler_t event_handler, void *event_handler_arg);
//General Variables
static uint8_t * msc_ram_disk = NULL;
static fat_boot_sector_t * msc_boot = NULL;
static uint8_t * msc_table = NULL;
static uint16_t msc_table_sectors = 0;
static uint16_t msc_total_sectors = 0;
static bool mcs_is_fat16 = false;
//Firmware Read
static const esp_partition_t* msc_run_partition = NULL;
static uint16_t fw_start_sector = 0;
static uint16_t fw_end_sector = 0;
static size_t fw_size = 0;
static fat_dir_entry_t * fw_entry = NULL;
//Firmware Write
typedef enum {
MSC_UPDATE_IDLE,
MSC_UPDATE_STARTING,
MSC_UPDATE_RUNNING,
MSC_UPDATE_END
} msc_update_state_t;
static const esp_partition_t* msc_ota_partition = NULL;
static msc_update_state_t msc_update_state = MSC_UPDATE_IDLE;
static uint16_t msc_update_start_sector = 0;
static uint32_t msc_update_bytes_written = 0;
static fat_dir_entry_t * msc_update_entry = NULL;
static uint32_t get_firmware_size(const esp_partition_t* partition){
esp_image_metadata_t data;
const esp_partition_pos_t running_pos = {
.offset = partition->address,
.size = partition->size,
};
data.start_addr = running_pos.offset;
esp_image_verify(ESP_IMAGE_VERIFY, &running_pos, &data);
return data.image_len;
}
//Get number of sectors required based on the size of the firmware and OTA partition
static size_t msc_update_get_required_disk_sectors(){
size_t data_sectors = 16;
size_t total_sectors = 0;
msc_run_partition = esp_ota_get_running_partition();
msc_ota_partition = esp_ota_get_next_update_partition(NULL);
if(msc_run_partition){
fw_size = get_firmware_size(msc_run_partition);
data_sectors += FAT_SIZE_TO_SECTORS(fw_size);
log_d("APP size: %u (%u sectors)", fw_size, FAT_SIZE_TO_SECTORS(fw_size));
} else {
log_w("APP partition not found. Reading disabled");
}
if(msc_ota_partition){
data_sectors += FAT_SIZE_TO_SECTORS(msc_ota_partition->size);
log_d("OTA size: %u (%u sectors)", msc_ota_partition->size, FAT_SIZE_TO_SECTORS(msc_ota_partition->size));
} else {
log_w("OTA partition not found. Writing disabled");
}
msc_table_sectors = fat_sectors_per_alloc_table(data_sectors, false);
total_sectors = data_sectors + msc_table_sectors + 2;
if(total_sectors > 0xFF4){
log_d("USING FAT16");
mcs_is_fat16 = true;
total_sectors -= msc_table_sectors;
msc_table_sectors = fat_sectors_per_alloc_table(data_sectors, true);
total_sectors += msc_table_sectors;
} else {
log_d("USING FAT12");
mcs_is_fat16 = false;
}
log_d("FAT sector size: %u", DISK_SECTOR_SIZE);
log_d("FAT data sectors: %u", data_sectors);
log_d("FAT table sectors: %u", msc_table_sectors);
log_d("FAT total sectors: %u (%uKB)", total_sectors, (total_sectors * DISK_SECTOR_SIZE) / 1024);
return total_sectors;
}
//setup the ramdisk and add the firmware download file
static bool msc_update_setup_disk(const char * volume_label, uint32_t serial_number){
msc_total_sectors = msc_update_get_required_disk_sectors();
uint8_t ram_sectors = msc_table_sectors + 2;
msc_ram_disk = (uint8_t*)calloc(ram_sectors, DISK_SECTOR_SIZE);
if(!msc_ram_disk){
log_e("Failed to allocate RAM Disk: %u bytes", ram_sectors * DISK_SECTOR_SIZE);
return false;
}
fw_start_sector = ram_sectors;
fw_end_sector = fw_start_sector;
msc_boot = fat_add_boot_sector(msc_ram_disk, msc_total_sectors, msc_table_sectors, fat_file_system_type(mcs_is_fat16), volume_label, serial_number);
msc_table = fat_add_table(msc_ram_disk, msc_boot, mcs_is_fat16);
//fat_dir_entry_t * label = fat_add_label(msc_ram_disk, volume_label);
if(msc_run_partition){
fw_entry = fat_add_root_file(msc_ram_disk, 0, "FIRMWARE", "BIN", fw_size, 2, mcs_is_fat16);
fw_end_sector = FAT_SIZE_TO_SECTORS(fw_size) + fw_start_sector;
}
return true;
}
static void msc_update_delete_disk(){
fw_entry = NULL;
fw_size = 0;
fw_end_sector = 0;
fw_start_sector = 0;
msc_table = NULL;
msc_boot = NULL;
msc_table_sectors = 0;
msc_total_sectors = 0;
msc_run_partition = NULL;
msc_ota_partition = NULL;
msc_update_state = MSC_UPDATE_IDLE;
msc_update_start_sector = 0;
msc_update_bytes_written = 0;
msc_update_entry = NULL;
free(msc_ram_disk);
msc_ram_disk = NULL;
}
//filter out entries to only include BINs in the root folder
static fat_dir_entry_t * msc_update_get_root_bin_entry(uint8_t index){
fat_dir_entry_t * entry = (fat_dir_entry_t *)(msc_ram_disk + ((msc_boot->sectors_per_alloc_table+1) * DISK_SECTOR_SIZE) + (index * sizeof(fat_dir_entry_t)));
fat_lfn_entry_t * lfn = (fat_lfn_entry_t*)entry;
//empty entry
if(entry->file_magic == 0){
return NULL;
}
//long file name
if(lfn->attr == 0x0F && lfn->type == 0x00 && lfn->first_cluster == 0x0000){
return NULL;
}
//only files marked as archives
if(entry->file_attr != FAT_FILE_ATTR_ARCHIVE){
return NULL;
}
//deleted
if(entry->file_magic == 0xE5 || entry->file_magic == 0x05){
return NULL;
}
//not bins
if(memcmp("BIN", entry->file_extension, 3)){
return NULL;
}
return entry;
}
//get an empty bin (the host will add an entry for file about to be written with size of zero)
static fat_dir_entry_t * msc_update_find_new_bin(){
for(uint8_t i=16; i;){
i--;
fat_dir_entry_t * entry = msc_update_get_root_bin_entry(i);
if(entry && entry->file_size == 0){
return entry;
}
}
return NULL;
}
//get a bin starting from particular sector
static fat_dir_entry_t * msc_update_find_bin(uint16_t sector){
for(uint8_t i=16; i; ){
i--;
fat_dir_entry_t * entry = msc_update_get_root_bin_entry(i);
if(entry && entry->data_start_sector == (sector - msc_boot->sectors_per_alloc_table)){
return entry;
}
}
return NULL;
}
//write the new data and erase the flash blocks when necessary
static esp_err_t msc_update_write(const esp_partition_t *partition, uint32_t offset, void *data, size_t size){
esp_err_t err = ESP_OK;
if((offset & (SPI_FLASH_SEC_SIZE-1)) == 0){
err = esp_partition_erase_range(partition, offset, SPI_FLASH_SEC_SIZE);
log_v("ERASE[0x%08X]: %s", offset, (err != ESP_OK)?"FAIL":"OK");
if(err != ESP_OK){
return err;
}
}
return esp_partition_write(partition, offset, data, size);
}
//called when error was encountered while updating
static void msc_update_error(){
log_e("UPDATE_ERROR: %u", msc_update_bytes_written);
arduino_firmware_msc_event_data_t p;
p.error.size = msc_update_bytes_written;
arduino_usb_event_post(ARDUINO_FIRMWARE_MSC_EVENTS, ARDUINO_FIRMWARE_MSC_ERROR_EVENT, &p, sizeof(arduino_firmware_msc_event_data_t), portMAX_DELAY);
msc_update_state = MSC_UPDATE_IDLE;
msc_update_entry = NULL;
msc_update_bytes_written = 0;
msc_update_start_sector = 0;
}
//called when all firmware bytes have been received
static void msc_update_end(){
log_d("UPDATE_END: %u", msc_update_entry->file_size);
msc_update_state = MSC_UPDATE_END;
size_t ota_size = get_firmware_size(msc_ota_partition);
if(ota_size != msc_update_entry->file_size){
log_e("OTA SIZE MISMATCH %u != %u", ota_size, msc_update_entry->file_size);
msc_update_error();
return;
}
if(!ota_size || esp_ota_set_boot_partition(msc_ota_partition) != ESP_OK){
log_e("ENABLING OTA PARTITION FAILED");
msc_update_error();
return;
}
arduino_firmware_msc_event_data_t p;
p.end.size = msc_update_entry->file_size;
arduino_usb_event_post(ARDUINO_FIRMWARE_MSC_EVENTS, ARDUINO_FIRMWARE_MSC_END_EVENT, &p, sizeof(arduino_firmware_msc_event_data_t), portMAX_DELAY);
}
static int32_t msc_write(uint32_t lba, uint32_t offset, uint8_t* buffer, uint32_t bufsize){
//log_d("lba: %u, offset: %u, bufsize: %u", lba, offset, bufsize);
if(lba < fw_start_sector){
//write to sectors that are in RAM
memcpy(msc_ram_disk + (lba * DISK_SECTOR_SIZE) + offset, buffer, bufsize);
if(msc_ota_partition && lba == (fw_start_sector - 1)){
//monitor the root folder table
if(msc_update_state <= MSC_UPDATE_RUNNING){
fat_dir_entry_t * update_entry = msc_update_find_new_bin();
if(update_entry) {
if(msc_update_entry) {
log_v("REPLACING ENTRY");
} else {
log_v("ASSIGNING ENTRY");
}
if(msc_update_state <= MSC_UPDATE_STARTING){
msc_update_state = MSC_UPDATE_STARTING;
msc_update_bytes_written = 0;
msc_update_start_sector = 0;
}
msc_update_entry = update_entry;
} else if(msc_update_state == MSC_UPDATE_RUNNING){
if(!msc_update_entry && msc_update_start_sector){
msc_update_entry = msc_update_find_bin(msc_update_start_sector);
}
if(msc_update_entry && msc_update_bytes_written >= msc_update_entry->file_size){
msc_update_end();
}
}
}
}
} else if(msc_ota_partition && lba >= msc_update_start_sector){
//handle writes to the region where the new firmware will be uploaded
arduino_firmware_msc_event_data_t p;
if(msc_update_state <= MSC_UPDATE_STARTING && buffer[0] == 0xE9){
msc_update_state = MSC_UPDATE_RUNNING;
msc_update_start_sector = lba;
msc_update_bytes_written = 0;
log_d("UPDATE_START: %u (0x%02X)", lba, lba - msc_boot->sectors_per_alloc_table);
arduino_usb_event_post(ARDUINO_FIRMWARE_MSC_EVENTS, ARDUINO_FIRMWARE_MSC_START_EVENT, &p, sizeof(arduino_firmware_msc_event_data_t), portMAX_DELAY);
if(msc_update_write(msc_ota_partition, ((lba - msc_update_start_sector) * DISK_SECTOR_SIZE) + offset, buffer, bufsize) == ESP_OK){
log_v("UPDATE_WRITE: %u %u", ((lba - msc_update_start_sector) * DISK_SECTOR_SIZE) + offset, bufsize);
msc_update_bytes_written = ((lba - msc_update_start_sector) * DISK_SECTOR_SIZE) + offset + bufsize;
p.write.offset = ((lba - msc_update_start_sector) * DISK_SECTOR_SIZE) + offset;
p.write.size = bufsize;
arduino_usb_event_post(ARDUINO_FIRMWARE_MSC_EVENTS, ARDUINO_FIRMWARE_MSC_WRITE_EVENT, &p, sizeof(arduino_firmware_msc_event_data_t), portMAX_DELAY);
} else {
msc_update_error();
return 0;
}
} else if(msc_update_state == MSC_UPDATE_RUNNING){
if(msc_update_entry && msc_update_entry->file_size && msc_update_bytes_written < msc_update_entry->file_size && (msc_update_bytes_written + bufsize) >= msc_update_entry->file_size){
bufsize = msc_update_entry->file_size - msc_update_bytes_written;
}
if(msc_update_write(msc_ota_partition, ((lba - msc_update_start_sector) * DISK_SECTOR_SIZE) + offset, buffer, bufsize) == ESP_OK){
log_v("UPDATE_WRITE: %u %u", ((lba - msc_update_start_sector) * DISK_SECTOR_SIZE) + offset, bufsize);
msc_update_bytes_written = ((lba - msc_update_start_sector) * DISK_SECTOR_SIZE) + offset + bufsize;
p.write.offset = ((lba - msc_update_start_sector) * DISK_SECTOR_SIZE) + offset;
p.write.size = bufsize;
arduino_usb_event_post(ARDUINO_FIRMWARE_MSC_EVENTS, ARDUINO_FIRMWARE_MSC_WRITE_EVENT, &p, sizeof(arduino_firmware_msc_event_data_t), portMAX_DELAY);
if(msc_update_entry && msc_update_entry->file_size && msc_update_bytes_written >= msc_update_entry->file_size){
msc_update_end();
}
} else {
msc_update_error();
return 0;
}
}
}
return bufsize;
}
static int32_t msc_read(uint32_t lba, uint32_t offset, void* buffer, uint32_t bufsize){
//log_d("lba: %u, offset: %u, bufsize: %u", lba, offset, bufsize);
if(lba < fw_start_sector){
memcpy(buffer, msc_ram_disk + (lba * DISK_SECTOR_SIZE) + offset, bufsize);
} else if(msc_run_partition && lba < fw_end_sector){
//read the currently running firmware
if(esp_partition_read(msc_run_partition, ((lba - fw_start_sector) * DISK_SECTOR_SIZE) + offset, buffer, bufsize) != ESP_OK){
return 0;
}
} else {
memset(buffer, 0, bufsize);
}
return bufsize;
}
static bool msc_start_stop(uint8_t power_condition, bool start, bool load_eject){
//log_d("power: %u, start: %u, eject: %u", power_condition, start, load_eject);
arduino_firmware_msc_event_data_t p;
p.power.power_condition = power_condition;
p.power.start = start;
p.power.load_eject = load_eject;
arduino_usb_event_post(ARDUINO_FIRMWARE_MSC_EVENTS, ARDUINO_FIRMWARE_MSC_POWER_EVENT, &p, sizeof(arduino_firmware_msc_event_data_t), portMAX_DELAY);
return true;
}
static volatile TaskHandle_t msc_task_handle = NULL;
static void msc_task(void *pvParameters){
for (;;) {
if(msc_update_state == MSC_UPDATE_END){
delay(100);
esp_restart();
}
delay(100);
}
msc_task_handle = NULL;
vTaskDelete(NULL);
}
FirmwareMSC::FirmwareMSC():msc(){}
FirmwareMSC::~FirmwareMSC(){
end();
}
bool FirmwareMSC::begin(){
if(msc_ram_disk){
return true;
}
if(!msc_update_setup_disk(USB_FW_MSC_VOLUME_NAME, USB_FW_MSC_SERIAL_NUMBER)){
return false;
}
if(!msc_task_handle){
xTaskCreateUniversal(msc_task, "msc_disk", 1024, NULL, 2, (TaskHandle_t*)&msc_task_handle, 0);
if(!msc_task_handle){
msc_update_delete_disk();
return false;
}
}
msc.vendorID(USB_FW_MSC_VENDOR_ID);
msc.productID(USB_FW_MSC_PRODUCT_ID);
msc.productRevision(USB_FW_MSC_PRODUCT_REVISION);
msc.onStartStop(msc_start_stop);
msc.onRead(msc_read);
msc.onWrite(msc_write);
msc.mediaPresent(true);
msc.begin(msc_boot->fat12_sector_num, DISK_SECTOR_SIZE);
return true;
}
void FirmwareMSC::end(){
msc.end();
if(msc_task_handle){
vTaskDelete(msc_task_handle);
msc_task_handle = NULL;
}
msc_update_delete_disk();
}
void FirmwareMSC::onEvent(esp_event_handler_t callback){
onEvent(ARDUINO_FIRMWARE_MSC_ANY_EVENT, callback);
}
void FirmwareMSC::onEvent(arduino_firmware_msc_event_t event, esp_event_handler_t callback){
arduino_usb_event_handler_register_with(ARDUINO_FIRMWARE_MSC_EVENTS, event, callback, this);
}
#if ARDUINO_USB_MSC_ON_BOOT
FirmwareMSC MSC_Update;
#endif
#endif /* CONFIG_USB_MSC_ENABLED */

@ -1,70 +0,0 @@
// Copyright 2015-2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdbool.h>
#include "USBMSC.h"
#if CONFIG_TINYUSB_MSC_ENABLED
#include "esp_event.h"
ESP_EVENT_DECLARE_BASE(ARDUINO_FIRMWARE_MSC_EVENTS);
typedef enum {
ARDUINO_FIRMWARE_MSC_ANY_EVENT = ESP_EVENT_ANY_ID,
ARDUINO_FIRMWARE_MSC_START_EVENT = 0,
ARDUINO_FIRMWARE_MSC_WRITE_EVENT,
ARDUINO_FIRMWARE_MSC_END_EVENT,
ARDUINO_FIRMWARE_MSC_ERROR_EVENT,
ARDUINO_FIRMWARE_MSC_POWER_EVENT,
ARDUINO_FIRMWARE_MSC_MAX_EVENT,
} arduino_firmware_msc_event_t;
typedef union {
struct {
size_t offset;
size_t size;
} write;
struct {
uint8_t power_condition;
bool start;
bool load_eject;
} power;
struct {
size_t size;
} end;
struct {
size_t size;
} error;
} arduino_firmware_msc_event_data_t;
class FirmwareMSC {
private:
USBMSC msc;
public:
FirmwareMSC();
~FirmwareMSC();
bool begin();
void end();
void onEvent(esp_event_handler_t callback);
void onEvent(arduino_firmware_msc_event_t event, esp_event_handler_t callback);
};
#if ARDUINO_USB_MSC_ON_BOOT
extern FirmwareMSC MSC_Update;
#endif
#endif /* CONFIG_TINYUSB_MSC_ENABLED */

@ -1,44 +0,0 @@
/*
* FunctionalInterrupt.cpp
*
* Created on: 8 jul. 2018
* Author: Herman
*/
#include "FunctionalInterrupt.h"
#include "Arduino.h"
typedef void (*voidFuncPtr)(void);
typedef void (*voidFuncPtrArg)(void*);
extern "C"
{
extern void __attachInterruptFunctionalArg(uint8_t pin, voidFuncPtrArg userFunc, void * arg, int intr_type, bool functional);
}
void ARDUINO_ISR_ATTR interruptFunctional(void* arg)
{
InterruptArgStructure* localArg = (InterruptArgStructure*)arg;
if (localArg->interruptFunction)
{
localArg->interruptFunction();
}
}
void attachInterrupt(uint8_t pin, std::function<void(void)> intRoutine, int mode)
{
// use the local interrupt routine which takes the ArgStructure as argument
__attachInterruptFunctionalArg (digitalPinToGPIONumber(pin), (voidFuncPtrArg)interruptFunctional, new InterruptArgStructure{intRoutine}, mode, true);
}
extern "C"
{
void cleanupFunctional(void* arg)
{
delete (InterruptArgStructure*)arg;
}
}

@ -1,22 +0,0 @@
/*
* FunctionalInterrupt.h
*
* Created on: 8 jul. 2018
* Author: Herman
*/
#ifndef CORE_CORE_FUNCTIONALINTERRUPT_H_
#define CORE_CORE_FUNCTIONALINTERRUPT_H_
#include <functional>
#include <stdint.h>
struct InterruptArgStructure {
std::function<void(void)> interruptFunction;
};
// The extra set of parentheses here prevents macros defined
// in io_pin_remap.h from applying to this declaration.
void (attachInterrupt)(uint8_t pin, std::function<void(void)> intRoutine, int mode);
#endif /* CORE_CORE_FUNCTIONALINTERRUPT_H_ */

@ -1,411 +0,0 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "USB.h"
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3
#include "esp32-hal.h"
#include "HWCDC.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/ringbuf.h"
#include "esp_intr_alloc.h"
#include "soc/periph_defs.h"
#include "hal/usb_serial_jtag_ll.h"
ESP_EVENT_DEFINE_BASE(ARDUINO_HW_CDC_EVENTS);
static RingbufHandle_t tx_ring_buf = NULL;
static xQueueHandle rx_queue = NULL;
static uint8_t rx_data_buf[64] = {0};
static intr_handle_t intr_handle = NULL;
static volatile bool initial_empty = false;
static xSemaphoreHandle tx_lock = NULL;
// workaround for when USB CDC is not connected
static uint32_t tx_timeout_ms = 0;
static bool tx_timeout_change_request = false;
static esp_event_loop_handle_t arduino_hw_cdc_event_loop_handle = NULL;
static esp_err_t arduino_hw_cdc_event_post(esp_event_base_t event_base, int32_t event_id, void *event_data, size_t event_data_size, BaseType_t *task_unblocked){
if(arduino_hw_cdc_event_loop_handle == NULL){
return ESP_FAIL;
}
return esp_event_isr_post_to(arduino_hw_cdc_event_loop_handle, event_base, event_id, event_data, event_data_size, task_unblocked);
}
static esp_err_t arduino_hw_cdc_event_handler_register_with(esp_event_base_t event_base, int32_t event_id, esp_event_handler_t event_handler, void *event_handler_arg){
if (!arduino_hw_cdc_event_loop_handle) {
esp_event_loop_args_t event_task_args = {
.queue_size = 5,
.task_name = "arduino_hw_cdc_events",
.task_priority = 5,
.task_stack_size = 2048,
.task_core_id = tskNO_AFFINITY
};
if (esp_event_loop_create(&event_task_args, &arduino_hw_cdc_event_loop_handle) != ESP_OK) {
log_e("esp_event_loop_create failed");
}
}
if(arduino_hw_cdc_event_loop_handle == NULL){
return ESP_FAIL;
}
return esp_event_handler_register_with(arduino_hw_cdc_event_loop_handle, event_base, event_id, event_handler, event_handler_arg);
}
static void hw_cdc_isr_handler(void *arg) {
portBASE_TYPE xTaskWoken = 0;
uint32_t usbjtag_intr_status = 0;
arduino_hw_cdc_event_data_t event = {0};
usbjtag_intr_status = usb_serial_jtag_ll_get_intsts_mask();
if (usbjtag_intr_status & USB_SERIAL_JTAG_INTR_SERIAL_IN_EMPTY) {
// Interrupt tells us the host picked up the data we sent.
if (usb_serial_jtag_ll_txfifo_writable() == 1) {
// We disable the interrupt here so that the interrupt won't be triggered if there is no data to send.
usb_serial_jtag_ll_disable_intr_mask(USB_SERIAL_JTAG_INTR_SERIAL_IN_EMPTY);
if(!initial_empty){
initial_empty = true;
// First time USB is plugged and the application has not explicitly set TX Timeout, set it to default 100ms.
// Otherwise, USB is still unplugged and the timeout will be kept as Zero in order to avoid any delay in the
// application whenever it uses write() and the TX Queue gets full.
if (!tx_timeout_change_request) {
tx_timeout_ms = 100;
}
//send event?
//ets_printf("CONNECTED\n");
arduino_hw_cdc_event_post(ARDUINO_HW_CDC_EVENTS, ARDUINO_HW_CDC_CONNECTED_EVENT, &event, sizeof(arduino_hw_cdc_event_data_t), &xTaskWoken);
}
size_t queued_size;
uint8_t *queued_buff = (uint8_t *)xRingbufferReceiveUpToFromISR(tx_ring_buf, &queued_size, 64);
// If the hardware fifo is avaliable, write in it. Otherwise, do nothing.
if (queued_buff != NULL) { //Although tx_queued_bytes may be larger than 0. We may have interrupt before xRingbufferSend() was called.
//Copy the queued buffer into the TX FIFO
usb_serial_jtag_ll_clr_intsts_mask(USB_SERIAL_JTAG_INTR_SERIAL_IN_EMPTY);
usb_serial_jtag_ll_write_txfifo(queued_buff, queued_size);
usb_serial_jtag_ll_txfifo_flush();
vRingbufferReturnItemFromISR(tx_ring_buf, queued_buff, &xTaskWoken);
usb_serial_jtag_ll_ena_intr_mask(USB_SERIAL_JTAG_INTR_SERIAL_IN_EMPTY);
//send event?
//ets_printf("TX:%u\n", queued_size);
event.tx.len = queued_size;
arduino_hw_cdc_event_post(ARDUINO_HW_CDC_EVENTS, ARDUINO_HW_CDC_TX_EVENT, &event, sizeof(arduino_hw_cdc_event_data_t), &xTaskWoken);
}
} else {
usb_serial_jtag_ll_clr_intsts_mask(USB_SERIAL_JTAG_INTR_SERIAL_IN_EMPTY);
}
}
if (usbjtag_intr_status & USB_SERIAL_JTAG_INTR_SERIAL_OUT_RECV_PKT) {
// read rx buffer(max length is 64), and send avaliable data to ringbuffer.
// Ensure the rx buffer size is larger than RX_MAX_SIZE.
usb_serial_jtag_ll_clr_intsts_mask(USB_SERIAL_JTAG_INTR_SERIAL_OUT_RECV_PKT);
uint32_t rx_fifo_len = usb_serial_jtag_ll_read_rxfifo(rx_data_buf, 64);
uint32_t i=0;
for(i=0; i<rx_fifo_len; i++){
if(rx_queue == NULL || !xQueueSendFromISR(rx_queue, rx_data_buf+i, &xTaskWoken)){
break;
}
}
//send event?
//ets_printf("RX:%u/%u\n", i, rx_fifo_len);
event.rx.len = i;
arduino_hw_cdc_event_post(ARDUINO_HW_CDC_EVENTS, ARDUINO_HW_CDC_RX_EVENT, &event, sizeof(arduino_hw_cdc_event_data_t), &xTaskWoken);
}
if (usbjtag_intr_status & USB_SERIAL_JTAG_INTR_BUS_RESET) {
usb_serial_jtag_ll_clr_intsts_mask(USB_SERIAL_JTAG_INTR_BUS_RESET);
initial_empty = false;
usb_serial_jtag_ll_ena_intr_mask(USB_SERIAL_JTAG_INTR_SERIAL_IN_EMPTY);
//ets_printf("BUS_RESET\n");
arduino_hw_cdc_event_post(ARDUINO_HW_CDC_EVENTS, ARDUINO_HW_CDC_BUS_RESET_EVENT, &event, sizeof(arduino_hw_cdc_event_data_t), &xTaskWoken);
}
if (xTaskWoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
static void ARDUINO_ISR_ATTR cdc0_write_char(char c) {
if(xPortInIsrContext()){
xRingbufferSendFromISR(tx_ring_buf, (void*) (&c), 1, NULL);
} else {
xRingbufferSend(tx_ring_buf, (void*) (&c), 1, tx_timeout_ms / portTICK_PERIOD_MS);
}
usb_serial_jtag_ll_ena_intr_mask(USB_SERIAL_JTAG_INTR_SERIAL_IN_EMPTY);
}
HWCDC::HWCDC() {
}
HWCDC::~HWCDC(){
end();
}
HWCDC::operator bool() const
{
return initial_empty;
}
void HWCDC::onEvent(esp_event_handler_t callback){
onEvent(ARDUINO_HW_CDC_ANY_EVENT, callback);
}
void HWCDC::onEvent(arduino_hw_cdc_event_t event, esp_event_handler_t callback){
arduino_hw_cdc_event_handler_register_with(ARDUINO_HW_CDC_EVENTS, event, callback, this);
}
void HWCDC::begin(unsigned long baud)
{
if(tx_lock == NULL) {
tx_lock = xSemaphoreCreateMutex();
}
//RX Buffer default has 256 bytes if not preset
if(rx_queue == NULL) {
if (!setRxBufferSize(256)) {
log_e("HW CDC RX Buffer error");
}
}
//TX Buffer default has 256 bytes if not preset
if (tx_ring_buf == NULL) {
if (!setTxBufferSize(256)) {
log_e("HW CDC TX Buffer error");
}
}
usb_serial_jtag_ll_disable_intr_mask(USB_SERIAL_JTAG_LL_INTR_MASK);
usb_serial_jtag_ll_clr_intsts_mask(USB_SERIAL_JTAG_LL_INTR_MASK);
usb_serial_jtag_ll_ena_intr_mask(USB_SERIAL_JTAG_INTR_SERIAL_IN_EMPTY | USB_SERIAL_JTAG_INTR_SERIAL_OUT_RECV_PKT | USB_SERIAL_JTAG_INTR_BUS_RESET);
if(!intr_handle && esp_intr_alloc(ETS_USB_SERIAL_JTAG_INTR_SOURCE, 0, hw_cdc_isr_handler, NULL, &intr_handle) != ESP_OK){
isr_log_e("HW USB CDC failed to init interrupts");
end();
return;
}
usb_serial_jtag_ll_txfifo_flush();
}
void HWCDC::end()
{
//Disable tx/rx interrupt.
usb_serial_jtag_ll_disable_intr_mask(USB_SERIAL_JTAG_LL_INTR_MASK);
esp_intr_free(intr_handle);
intr_handle = NULL;
if(tx_lock != NULL) {
vSemaphoreDelete(tx_lock);
tx_lock = NULL;
}
setRxBufferSize(0);
setTxBufferSize(0);
if (arduino_hw_cdc_event_loop_handle) {
esp_event_loop_delete(arduino_hw_cdc_event_loop_handle);
arduino_hw_cdc_event_loop_handle = NULL;
}
}
void HWCDC::setTxTimeoutMs(uint32_t timeout){
tx_timeout_ms = timeout;
// it registers that the user has explicitly requested to use a value as TX timeout
// used for the workaround with unplugged USB and TX Queue Full that causes a delay on every write()
tx_timeout_change_request = true;
}
/*
* WRITING
*/
size_t HWCDC::setTxBufferSize(size_t tx_queue_len){
if(tx_ring_buf){
vRingbufferDelete(tx_ring_buf);
tx_ring_buf = NULL;
}
if(!tx_queue_len){
return 0;
}
tx_ring_buf = xRingbufferCreate(tx_queue_len, RINGBUF_TYPE_BYTEBUF);
if(!tx_ring_buf){
return 0;
}
return tx_queue_len;
}
int HWCDC::availableForWrite(void)
{
if(tx_ring_buf == NULL || tx_lock == NULL){
return 0;
}
if(xSemaphoreTake(tx_lock, tx_timeout_ms / portTICK_PERIOD_MS) != pdPASS){
return 0;
}
size_t a = xRingbufferGetCurFreeSize(tx_ring_buf);
xSemaphoreGive(tx_lock);
return a;
}
size_t HWCDC::write(const uint8_t *buffer, size_t size)
{
if(buffer == NULL || size == 0 || tx_ring_buf == NULL || tx_lock == NULL){
return 0;
}
if(xSemaphoreTake(tx_lock, tx_timeout_ms / portTICK_PERIOD_MS) != pdPASS){
return 0;
}
size_t max_size = xRingbufferGetMaxItemSize(tx_ring_buf);
size_t space = xRingbufferGetCurFreeSize(tx_ring_buf);
size_t to_send = size, so_far = 0;
if(space > size){
space = size;
}
// Non-Blocking method, Sending data to ringbuffer, and handle the data in ISR.
if(xRingbufferSend(tx_ring_buf, (void*) (buffer), space, 0) != pdTRUE){
size = 0;
} else {
to_send -= space;
so_far += space;
// Now trigger the ISR to read data from the ring buffer.
usb_serial_jtag_ll_ena_intr_mask(USB_SERIAL_JTAG_INTR_SERIAL_IN_EMPTY);
while(to_send){
if(max_size > to_send){
max_size = to_send;
}
// Blocking method, Sending data to ringbuffer, and handle the data in ISR.
if(xRingbufferSend(tx_ring_buf, (void*) (buffer+so_far), max_size, tx_timeout_ms / portTICK_PERIOD_MS) != pdTRUE){
size = so_far;
break;
}
so_far += max_size;
to_send -= max_size;
// Now trigger the ISR to read data from the ring buffer.
usb_serial_jtag_ll_ena_intr_mask(USB_SERIAL_JTAG_INTR_SERIAL_IN_EMPTY);
}
}
xSemaphoreGive(tx_lock);
return size;
}
size_t HWCDC::write(uint8_t c)
{
return write(&c, 1);
}
void HWCDC::flush(void)
{
if(tx_ring_buf == NULL || tx_lock == NULL){
return;
}
if(xSemaphoreTake(tx_lock, tx_timeout_ms / portTICK_PERIOD_MS) != pdPASS){
return;
}
UBaseType_t uxItemsWaiting = 0;
vRingbufferGetInfo(tx_ring_buf, NULL, NULL, NULL, NULL, &uxItemsWaiting);
if(uxItemsWaiting){
// Now trigger the ISR to read data from the ring buffer.
usb_serial_jtag_ll_ena_intr_mask(USB_SERIAL_JTAG_INTR_SERIAL_IN_EMPTY);
}
while(uxItemsWaiting){
delay(5);
vRingbufferGetInfo(tx_ring_buf, NULL, NULL, NULL, NULL, &uxItemsWaiting);
}
xSemaphoreGive(tx_lock);
}
/*
* READING
*/
size_t HWCDC::setRxBufferSize(size_t rx_queue_len){
if(rx_queue){
vQueueDelete(rx_queue);
rx_queue = NULL;
}
if(!rx_queue_len){
return 0;
}
rx_queue = xQueueCreate(rx_queue_len, sizeof(uint8_t));
if(!rx_queue){
return 0;
}
return rx_queue_len;
}
int HWCDC::available(void)
{
if(rx_queue == NULL){
return -1;
}
return uxQueueMessagesWaiting(rx_queue);
}
int HWCDC::peek(void)
{
if(rx_queue == NULL){
return -1;
}
uint8_t c;
if(xQueuePeek(rx_queue, &c, 0)) {
return c;
}
return -1;
}
int HWCDC::read(void)
{
if(rx_queue == NULL){
return -1;
}
uint8_t c = 0;
if(xQueueReceive(rx_queue, &c, 0)) {
return c;
}
return -1;
}
size_t HWCDC::read(uint8_t *buffer, size_t size)
{
if(rx_queue == NULL){
return -1;
}
uint8_t c = 0;
size_t count = 0;
while(count < size && xQueueReceive(rx_queue, &c, 0)){
buffer[count++] = c;
}
return count;
}
/*
* DEBUG
*/
void HWCDC::setDebugOutput(bool en)
{
if(en) {
uartSetDebug(NULL);
ets_install_putc1((void (*)(char)) &cdc0_write_char);
} else {
ets_install_putc1(NULL);
}
}
#if ARDUINO_USB_MODE
#if ARDUINO_USB_CDC_ON_BOOT//Serial used for USB CDC
HWCDC Serial;
#else
HWCDC USBSerial;
#endif
#endif
#endif /* CONFIG_TINYUSB_CDC_ENABLED */

@ -1,109 +0,0 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "sdkconfig.h"
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3
#include <inttypes.h>
#include "esp_event.h"
#include "Stream.h"
ESP_EVENT_DECLARE_BASE(ARDUINO_HW_CDC_EVENTS);
typedef enum {
ARDUINO_HW_CDC_ANY_EVENT = ESP_EVENT_ANY_ID,
ARDUINO_HW_CDC_CONNECTED_EVENT = 0,
ARDUINO_HW_CDC_BUS_RESET_EVENT,
ARDUINO_HW_CDC_RX_EVENT,
ARDUINO_HW_CDC_TX_EVENT,
ARDUINO_HW_CDC_MAX_EVENT,
} arduino_hw_cdc_event_t;
typedef union {
struct {
size_t len;
} rx;
struct {
size_t len;
} tx;
} arduino_hw_cdc_event_data_t;
class HWCDC: public Stream
{
public:
HWCDC();
~HWCDC();
void onEvent(esp_event_handler_t callback);
void onEvent(arduino_hw_cdc_event_t event, esp_event_handler_t callback);
size_t setRxBufferSize(size_t);
size_t setTxBufferSize(size_t);
void setTxTimeoutMs(uint32_t timeout);
void begin(unsigned long baud=0);
void end();
int available(void);
int availableForWrite(void);
int peek(void);
int read(void);
size_t read(uint8_t *buffer, size_t size);
size_t write(uint8_t);
size_t write(const uint8_t *buffer, size_t size);
void flush(void);
inline size_t read(char * buffer, size_t size)
{
return read((uint8_t*) buffer, size);
}
inline size_t write(const char * buffer, size_t size)
{
return write((uint8_t*) buffer, size);
}
inline size_t write(const char * s)
{
return write((uint8_t*) s, strlen(s));
}
inline size_t write(unsigned long n)
{
return write((uint8_t) n);
}
inline size_t write(long n)
{
return write((uint8_t) n);
}
inline size_t write(unsigned int n)
{
return write((uint8_t) n);
}
inline size_t write(int n)
{
return write((uint8_t) n);
}
operator bool() const;
void setDebugOutput(bool);
uint32_t baudRate(){return 115200;}
};
#if ARDUINO_USB_MODE
#if ARDUINO_USB_CDC_ON_BOOT//Serial used for USB CDC
extern HWCDC Serial;
#else
extern HWCDC USBSerial;
#endif
#endif
#endif /* CONFIG_IDF_TARGET_ESP32C3 */

@ -1,623 +0,0 @@
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "pins_arduino.h"
#include "io_pin_remap.h"
#include "HardwareSerial.h"
#include "soc/soc_caps.h"
#include "driver/uart.h"
#include "freertos/queue.h"
#ifndef ARDUINO_SERIAL_EVENT_TASK_STACK_SIZE
#define ARDUINO_SERIAL_EVENT_TASK_STACK_SIZE 2048
#endif
#ifndef ARDUINO_SERIAL_EVENT_TASK_PRIORITY
#define ARDUINO_SERIAL_EVENT_TASK_PRIORITY (configMAX_PRIORITIES-1)
#endif
#ifndef ARDUINO_SERIAL_EVENT_TASK_RUNNING_CORE
#define ARDUINO_SERIAL_EVENT_TASK_RUNNING_CORE -1
#endif
#ifndef SOC_RX0
#if CONFIG_IDF_TARGET_ESP32
#define SOC_RX0 3
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#define SOC_RX0 44
#elif CONFIG_IDF_TARGET_ESP32C3
#define SOC_RX0 20
#endif
#endif
#ifndef SOC_TX0
#if CONFIG_IDF_TARGET_ESP32
#define SOC_TX0 1
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#define SOC_TX0 43
#elif CONFIG_IDF_TARGET_ESP32C3
#define SOC_TX0 21
#endif
#endif
void serialEvent(void) __attribute__((weak));
void serialEvent(void) {}
#if SOC_UART_NUM > 1
#ifndef RX1
#if CONFIG_IDF_TARGET_ESP32
#define RX1 9
#elif CONFIG_IDF_TARGET_ESP32S2
#define RX1 18
#elif CONFIG_IDF_TARGET_ESP32C3
#define RX1 18
#elif CONFIG_IDF_TARGET_ESP32S3
#define RX1 15
#endif
#endif
#ifndef TX1
#if CONFIG_IDF_TARGET_ESP32
#define TX1 10
#elif CONFIG_IDF_TARGET_ESP32S2
#define TX1 17
#elif CONFIG_IDF_TARGET_ESP32C3
#define TX1 19
#elif CONFIG_IDF_TARGET_ESP32S3
#define TX1 16
#endif
#endif
void serialEvent1(void) __attribute__((weak));
void serialEvent1(void) {}
#endif /* SOC_UART_NUM > 1 */
#if SOC_UART_NUM > 2
#ifndef RX2
#if CONFIG_IDF_TARGET_ESP32
#define RX2 16
#elif CONFIG_IDF_TARGET_ESP32S3
#define RX2 19
#endif
#endif
#ifndef TX2
#if CONFIG_IDF_TARGET_ESP32
#define TX2 17
#elif CONFIG_IDF_TARGET_ESP32S3
#define TX2 20
#endif
#endif
void serialEvent2(void) __attribute__((weak));
void serialEvent2(void) {}
#endif /* SOC_UART_NUM > 2 */
#if !defined(NO_GLOBAL_INSTANCES) && !defined(NO_GLOBAL_SERIAL)
#if ARDUINO_USB_CDC_ON_BOOT //Serial used for USB CDC
HardwareSerial Serial0(0);
#else
HardwareSerial Serial(0);
#endif
#if SOC_UART_NUM > 1
HardwareSerial Serial1(1);
#endif
#if SOC_UART_NUM > 2
HardwareSerial Serial2(2);
#endif
void serialEventRun(void)
{
#if ARDUINO_USB_CDC_ON_BOOT //Serial used for USB CDC
if(Serial0.available()) serialEvent();
#else
if(Serial.available()) serialEvent();
#endif
#if SOC_UART_NUM > 1
if(Serial1.available()) serialEvent1();
#endif
#if SOC_UART_NUM > 2
if(Serial2.available()) serialEvent2();
#endif
}
#endif
#if !CONFIG_DISABLE_HAL_LOCKS
#define HSERIAL_MUTEX_LOCK() do {} while (xSemaphoreTake(_lock, portMAX_DELAY) != pdPASS)
#define HSERIAL_MUTEX_UNLOCK() xSemaphoreGive(_lock)
#else
#define HSERIAL_MUTEX_LOCK()
#define HSERIAL_MUTEX_UNLOCK()
#endif
HardwareSerial::HardwareSerial(int uart_nr) :
_uart_nr(uart_nr),
_uart(NULL),
_rxBufferSize(256),
_txBufferSize(0),
_onReceiveCB(NULL),
_onReceiveErrorCB(NULL),
_onReceiveTimeout(false),
_rxTimeout(2),
_rxFIFOFull(0),
_eventTask(NULL)
#if !CONFIG_DISABLE_HAL_LOCKS
,_lock(NULL)
#endif
,_rxPin(-1)
,_txPin(-1)
,_ctsPin(-1)
,_rtsPin(-1)
{
#if !CONFIG_DISABLE_HAL_LOCKS
if(_lock == NULL){
_lock = xSemaphoreCreateMutex();
if(_lock == NULL){
log_e("xSemaphoreCreateMutex failed");
return;
}
}
#endif
}
HardwareSerial::~HardwareSerial()
{
end();
#if !CONFIG_DISABLE_HAL_LOCKS
if(_lock != NULL){
vSemaphoreDelete(_lock);
}
#endif
}
void HardwareSerial::_createEventTask(void *args)
{
// Creating UART event Task
xTaskCreateUniversal(_uartEventTask, "uart_event_task", ARDUINO_SERIAL_EVENT_TASK_STACK_SIZE, this, ARDUINO_SERIAL_EVENT_TASK_PRIORITY, &_eventTask, ARDUINO_SERIAL_EVENT_TASK_RUNNING_CORE);
if (_eventTask == NULL) {
log_e(" -- UART%d Event Task not Created!", _uart_nr);
}
}
void HardwareSerial::_destroyEventTask(void)
{
if (_eventTask != NULL) {
vTaskDelete(_eventTask);
_eventTask = NULL;
}
}
void HardwareSerial::onReceiveError(OnReceiveErrorCb function)
{
HSERIAL_MUTEX_LOCK();
// function may be NULL to cancel onReceive() from its respective task
_onReceiveErrorCB = function;
// this can be called after Serial.begin(), therefore it shall create the event task
if (function != NULL && _uart != NULL && _eventTask == NULL) {
_createEventTask(this);
}
HSERIAL_MUTEX_UNLOCK();
}
void HardwareSerial::onReceive(OnReceiveCb function, bool onlyOnTimeout)
{
HSERIAL_MUTEX_LOCK();
// function may be NULL to cancel onReceive() from its respective task
_onReceiveCB = function;
// setting the callback to NULL will just disable it
if (_onReceiveCB != NULL) {
// When Rx timeout is Zero (disabled), there is only one possible option that is callback when FIFO reaches 120 bytes
_onReceiveTimeout = _rxTimeout > 0 ? onlyOnTimeout : false;
// in case that onReceive() shall work only with RX Timeout, FIFO shall be high
// this is a work around for an IDF issue with events and low FIFO Full value (< 3)
if (_onReceiveTimeout) {
uartSetRxFIFOFull(_uart, 120);
log_w("OnReceive is set to Timeout only, thus FIFO Full is now 120 bytes.");
}
// this method can be called after Serial.begin(), therefore it shall create the event task
if (_uart != NULL && _eventTask == NULL) {
_createEventTask(this); // Create event task
}
}
HSERIAL_MUTEX_UNLOCK();
}
// This function allow the user to define how many bytes will trigger an Interrupt that will copy RX FIFO to the internal RX Ringbuffer
// ISR will also move data from FIFO to RX Ringbuffer after a RX Timeout defined in HardwareSerial::setRxTimeout(uint8_t symbols_timeout)
// A low value of FIFO Full bytes will consume more CPU time within the ISR
// A high value of FIFO Full bytes will make the application wait longer to have byte available for the Stkech in a streaming scenario
// Both RX FIFO Full and RX Timeout may affect when onReceive() will be called
bool HardwareSerial::setRxFIFOFull(uint8_t fifoBytes)
{
HSERIAL_MUTEX_LOCK();
// in case that onReceive() shall work only with RX Timeout, FIFO shall be high
// this is a work around for an IDF issue with events and low FIFO Full value (< 3)
if (_onReceiveCB != NULL && _onReceiveTimeout) {
fifoBytes = 120;
log_w("OnReceive is set to Timeout only, thus FIFO Full is now 120 bytes.");
}
bool retCode = uartSetRxFIFOFull(_uart, fifoBytes); // Set new timeout
if (fifoBytes > 0 && fifoBytes < SOC_UART_FIFO_LEN - 1) _rxFIFOFull = fifoBytes;
HSERIAL_MUTEX_UNLOCK();
return retCode;
}
// timout is calculates in time to receive UART symbols at the UART baudrate.
// the estimation is about 11 bits per symbol (SERIAL_8N1)
bool HardwareSerial::setRxTimeout(uint8_t symbols_timeout)
{
HSERIAL_MUTEX_LOCK();
// Zero disables timeout, thus, onReceive callback will only be called when RX FIFO reaches 120 bytes
// Any non-zero value will activate onReceive callback based on UART baudrate with about 11 bits per symbol
_rxTimeout = symbols_timeout;
if (!symbols_timeout) _onReceiveTimeout = false; // only when RX timeout is disabled, we also must disable this flag
bool retCode = uartSetRxTimeout(_uart, _rxTimeout); // Set new timeout
HSERIAL_MUTEX_UNLOCK();
return retCode;
}
void HardwareSerial::eventQueueReset()
{
QueueHandle_t uartEventQueue = NULL;
if (_uart == NULL) {
return;
}
uartGetEventQueue(_uart, &uartEventQueue);
if (uartEventQueue != NULL) {
xQueueReset(uartEventQueue);
}
}
void HardwareSerial::_uartEventTask(void *args)
{
HardwareSerial *uart = (HardwareSerial *)args;
uart_event_t event;
QueueHandle_t uartEventQueue = NULL;
uartGetEventQueue(uart->_uart, &uartEventQueue);
if (uartEventQueue != NULL) {
for(;;) {
//Waiting for UART event.
if(xQueueReceive(uartEventQueue, (void * )&event, (portTickType)portMAX_DELAY)) {
hardwareSerial_error_t currentErr = UART_NO_ERROR;
switch(event.type) {
case UART_DATA:
if(uart->_onReceiveCB && uart->available() > 0 &&
((uart->_onReceiveTimeout && event.timeout_flag) || !uart->_onReceiveTimeout) )
uart->_onReceiveCB();
break;
case UART_FIFO_OVF:
log_w("UART%d FIFO Overflow. Consider adding Hardware Flow Control to your Application.", uart->_uart_nr);
currentErr = UART_FIFO_OVF_ERROR;
break;
case UART_BUFFER_FULL:
log_w("UART%d Buffer Full. Consider increasing your buffer size of your Application.", uart->_uart_nr);
currentErr = UART_BUFFER_FULL_ERROR;
break;
case UART_BREAK:
log_w("UART%d RX break.", uart->_uart_nr);
currentErr = UART_BREAK_ERROR;
break;
case UART_PARITY_ERR:
log_w("UART%d parity error.", uart->_uart_nr);
currentErr = UART_PARITY_ERROR;
break;
case UART_FRAME_ERR:
log_w("UART%d frame error.", uart->_uart_nr);
currentErr = UART_FRAME_ERROR;
break;
default:
log_w("UART%d unknown event type %d.", uart->_uart_nr, event.type);
break;
}
if (currentErr != UART_NO_ERROR) {
if(uart->_onReceiveErrorCB) uart->_onReceiveErrorCB(currentErr);
}
}
}
}
vTaskDelete(NULL);
}
void HardwareSerial::begin(unsigned long baud, uint32_t config, int8_t rxPin, int8_t txPin, bool invert, unsigned long timeout_ms, uint8_t rxfifo_full_thrhd)
{
if(0 > _uart_nr || _uart_nr >= SOC_UART_NUM) {
log_e("Serial number is invalid, please use numers from 0 to %u", SOC_UART_NUM - 1);
return;
}
#if !CONFIG_DISABLE_HAL_LOCKS
if(_lock == NULL){
log_e("MUTEX Lock failed. Can't begin.");
return;
}
#endif
HSERIAL_MUTEX_LOCK();
// First Time or after end() --> set default Pins
if (!uartIsDriverInstalled(_uart)) {
switch (_uart_nr) {
case UART_NUM_0:
if (rxPin < 0 && txPin < 0) {
rxPin = SOC_RX0;
txPin = SOC_TX0;
}
break;
#if SOC_UART_NUM > 1 // may save some flash bytes...
case UART_NUM_1:
if (rxPin < 0 && txPin < 0) {
rxPin = RX1;
txPin = TX1;
}
break;
#endif
#if SOC_UART_NUM > 2 // may save some flash bytes...
case UART_NUM_2:
if (rxPin < 0 && txPin < 0) {
rxPin = RX2;
txPin = TX2;
}
break;
#endif
}
}
// map logical pins to GPIO numbers
rxPin = digitalPinToGPIONumber(rxPin);
txPin = digitalPinToGPIONumber(txPin);
if(_uart) {
// in this case it is a begin() over a previous begin() - maybe to change baud rate
// thus do not disable debug output
end(false);
}
// IDF UART driver keeps Pin setting on restarting. Negative Pin number will keep it unmodified.
_uart = uartBegin(_uart_nr, baud ? baud : 9600, config, rxPin, txPin, _rxBufferSize, _txBufferSize, invert, rxfifo_full_thrhd);
if (!baud) {
// using baud rate as zero, forces it to try to detect the current baud rate in place
uartStartDetectBaudrate(_uart);
time_t startMillis = millis();
unsigned long detectedBaudRate = 0;
while(millis() - startMillis < timeout_ms && !(detectedBaudRate = uartDetectBaudrate(_uart))) {
yield();
}
end(false);
if(detectedBaudRate) {
delay(100); // Give some time...
_uart = uartBegin(_uart_nr, detectedBaudRate, config, rxPin, txPin, _rxBufferSize, _txBufferSize, invert, rxfifo_full_thrhd);
} else {
log_e("Could not detect baudrate. Serial data at the port must be present within the timeout for detection to be possible");
_uart = NULL;
}
}
// create a task to deal with Serial Events when, for example, calling begin() twice to change the baudrate,
// or when setting the callback before calling begin()
if (_uart != NULL && (_onReceiveCB != NULL || _onReceiveErrorCB != NULL) && _eventTask == NULL) {
_createEventTask(this);
}
// Set UART RX timeout
uartSetRxTimeout(_uart, _rxTimeout);
// Set UART FIFO Full depending on the baud rate.
// Lower baud rates will force to emulate byte-by-byte reading
// Higher baud rates will keep IDF default of 120 bytes for FIFO FULL Interrupt
// It can also be changed by the application at any time
if (!_rxFIFOFull) { // it has not being changed before calling begin()
// set a default FIFO Full value for the IDF driver
uint8_t fifoFull = 1;
if (baud > 57600 || (_onReceiveCB != NULL && _onReceiveTimeout)) {
fifoFull = 120;
}
uartSetRxFIFOFull(_uart, fifoFull);
_rxFIFOFull = fifoFull;
}
_rxPin = rxPin;
_txPin = txPin;
HSERIAL_MUTEX_UNLOCK();
}
void HardwareSerial::updateBaudRate(unsigned long baud)
{
uartSetBaudRate(_uart, baud);
}
void HardwareSerial::end(bool fullyTerminate)
{
// default Serial.end() will completely disable HardwareSerial,
// including any tasks or debug message channel (log_x()) - but not for IDF log messages!
if(fullyTerminate) {
_onReceiveCB = NULL;
_onReceiveErrorCB = NULL;
if (uartGetDebug() == _uart_nr) {
uartSetDebug(0);
}
_rxFIFOFull = 0;
uartDetachPins(_uart, _rxPin, _txPin, _ctsPin, _rtsPin);
_rxPin = _txPin = _ctsPin = _rtsPin = -1;
}
delay(10);
uartEnd(_uart);
_uart = 0;
_destroyEventTask();
}
void HardwareSerial::setDebugOutput(bool en)
{
if(_uart == 0) {
return;
}
if(en) {
uartSetDebug(_uart);
} else {
if(uartGetDebug() == _uart_nr) {
uartSetDebug(NULL);
}
}
}
int HardwareSerial::available(void)
{
return uartAvailable(_uart);
}
int HardwareSerial::availableForWrite(void)
{
return uartAvailableForWrite(_uart);
}
int HardwareSerial::peek(void)
{
if (available()) {
return uartPeek(_uart);
}
return -1;
}
int HardwareSerial::read(void)
{
uint8_t c = 0;
if (uartReadBytes(_uart, &c, 1, 0) == 1) {
return c;
} else {
return -1;
}
}
// read characters into buffer
// terminates if size characters have been read, or no further are pending
// returns the number of characters placed in the buffer
// the buffer is NOT null terminated.
size_t HardwareSerial::read(uint8_t *buffer, size_t size)
{
return uartReadBytes(_uart, buffer, size, 0);
}
// Overrides Stream::readBytes() to be faster using IDF
size_t HardwareSerial::readBytes(uint8_t *buffer, size_t length)
{
return uartReadBytes(_uart, buffer, length, (uint32_t)getTimeout());
}
void HardwareSerial::flush(void)
{
uartFlush(_uart);
}
void HardwareSerial::flush(bool txOnly)
{
uartFlushTxOnly(_uart, txOnly);
}
size_t HardwareSerial::write(uint8_t c)
{
uartWrite(_uart, c);
return 1;
}
size_t HardwareSerial::write(const uint8_t *buffer, size_t size)
{
uartWriteBuf(_uart, buffer, size);
return size;
}
uint32_t HardwareSerial::baudRate()
{
return uartGetBaudRate(_uart);
}
HardwareSerial::operator bool() const
{
return uartIsDriverInstalled(_uart);
}
void HardwareSerial::setRxInvert(bool invert)
{
uartSetRxInvert(_uart, invert);
}
// negative Pin value will keep it unmodified
bool HardwareSerial::setPins(int8_t rxPin, int8_t txPin, int8_t ctsPin, int8_t rtsPin)
{
if(_uart == NULL) {
log_e("setPins() shall be called after begin() - nothing done\n");
return false;
}
// map logical pins to GPIO numbers
rxPin = digitalPinToGPIONumber(rxPin);
txPin = digitalPinToGPIONumber(txPin);
ctsPin = digitalPinToGPIONumber(ctsPin);
rtsPin = digitalPinToGPIONumber(rtsPin);
// uartSetPins() checks if pins are valid for each function and for the SoC
bool retCode = uartSetPins(_uart, rxPin, txPin, ctsPin, rtsPin);
if (retCode) {
_txPin = _txPin >= 0 ? txPin : _txPin;
_rxPin = _rxPin >= 0 ? rxPin : _rxPin;
_rtsPin = _rtsPin >= 0 ? rtsPin : _rtsPin;
_ctsPin = _ctsPin >= 0 ? ctsPin : _ctsPin;
} else {
log_e("Error when setting Serial port Pins. Invalid Pin.\n");
}
return retCode;
}
// Enables or disables Hardware Flow Control using RTS and/or CTS pins (must use setAllPins() before)
bool HardwareSerial::setHwFlowCtrlMode(uint8_t mode, uint8_t threshold)
{
return uartSetHwFlowCtrlMode(_uart, mode, threshold);
}
// Sets the uart mode in the esp32 uart for use with RS485 modes (HwFlowCtrl must be disabled and RTS pin set)
bool HardwareSerial::setMode(uint8_t mode)
{
return uartSetMode(_uart, mode);
}
size_t HardwareSerial::setRxBufferSize(size_t new_size) {
if (_uart) {
log_e("RX Buffer can't be resized when Serial is already running.\n");
return 0;
}
if (new_size <= SOC_UART_FIFO_LEN) {
log_e("RX Buffer must be higher than %d.\n", SOC_UART_FIFO_LEN); // ESP32, S2, S3 and C3 means higher than 128
return 0;
}
_rxBufferSize = new_size;
return _rxBufferSize;
}
size_t HardwareSerial::setTxBufferSize(size_t new_size) {
if (_uart) {
log_e("TX Buffer can't be resized when Serial is already running.\n");
return 0;
}
if (new_size <= SOC_UART_FIFO_LEN) {
log_e("TX Buffer must be higher than %d.\n", SOC_UART_FIFO_LEN); // ESP32, S2, S3 and C3 means higher than 128
return 0;
}
_txBufferSize = new_size;
return _txBufferSize;
}

@ -1,216 +0,0 @@
/*
HardwareSerial.h - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 28 September 2010 by Mark Sproul
Modified 14 August 2012 by Alarus
Modified 3 December 2013 by Matthijs Kooijman
Modified 18 December 2014 by Ivan Grokhotkov (esp8266 platform support)
Modified 31 March 2015 by Markus Sattler (rewrite the code for UART0 + UART1 support in ESP8266)
Modified 25 April 2015 by Thomas Flayols (add configuration different from 8N1 in ESP8266)
Modified 13 October 2018 by Jeroen Döll (add baudrate detection)
Baudrate detection example usage (detection on Serial1):
void setup() {
Serial.begin(115200);
delay(100);
Serial.println();
Serial1.begin(0, SERIAL_8N1, -1, -1, true, 11000UL); // Passing 0 for baudrate to detect it, the last parameter is a timeout in ms
unsigned long detectedBaudRate = Serial1.baudRate();
if(detectedBaudRate) {
Serial.printf("Detected baudrate is %lu\n", detectedBaudRate);
} else {
Serial.println("No baudrate detected, Serial1 will not work!");
}
}
Pay attention: the baudrate returned by baudRate() may be rounded, eg 115200 returns 115201
*/
#ifndef HardwareSerial_h
#define HardwareSerial_h
#include <inttypes.h>
#include <functional>
#include "Stream.h"
#include "esp32-hal.h"
#include "soc/soc_caps.h"
#include "HWCDC.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
typedef enum {
UART_NO_ERROR,
UART_BREAK_ERROR,
UART_BUFFER_FULL_ERROR,
UART_FIFO_OVF_ERROR,
UART_FRAME_ERROR,
UART_PARITY_ERROR
} hardwareSerial_error_t;
typedef std::function<void(void)> OnReceiveCb;
typedef std::function<void(hardwareSerial_error_t)> OnReceiveErrorCb;
class HardwareSerial: public Stream
{
public:
HardwareSerial(int uart_nr);
~HardwareSerial();
// setRxTimeout sets the timeout after which onReceive callback will be called (after receiving data, it waits for this time of UART rx inactivity to call the callback fnc)
// param symbols_timeout defines a timeout threshold in uart symbol periods. Setting 0 symbol timeout disables the callback call by timeout.
// Maximum timeout setting is calculacted automatically by IDF. If set above the maximum, it is ignored and an error is printed on Serial0 (check console).
// Examples: Maximum for 11 bits symbol is 92 (SERIAL_8N2, SERIAL_8E1, SERIAL_8O1, etc), Maximum for 10 bits symbol is 101 (SERIAL_8N1).
// For example symbols_timeout=1 defines a timeout equal to transmission time of one symbol (~11 bit) on current baudrate.
// For a baudrate of 9600, SERIAL_8N1 (10 bit symbol) and symbols_timeout = 3, the timeout would be 3 / (9600 / 10) = 3.125 ms
bool setRxTimeout(uint8_t symbols_timeout);
// setRxFIFOFull(uint8_t fifoBytes) will set the number of bytes that will trigger UART_INTR_RXFIFO_FULL interrupt and fill up RxRingBuffer
// This affects some functions such as Serial::available() and Serial.read() because, in a UART flow of receiving data, Serial internal
// RxRingBuffer will be filled only after these number of bytes arrive or a RX Timeout happens.
// This parameter can be set to 1 in order to receive byte by byte, but it will also consume more CPU time as the ISR will be activates often.
bool setRxFIFOFull(uint8_t fifoBytes);
// onReceive will setup a callback that will be called whenever an UART interruption occurs (UART_INTR_RXFIFO_FULL or UART_INTR_RXFIFO_TOUT)
// UART_INTR_RXFIFO_FULL interrupt triggers at UART_FULL_THRESH_DEFAULT bytes received (defined as 120 bytes by default in IDF)
// UART_INTR_RXFIFO_TOUT interrupt triggers at UART_TOUT_THRESH_DEFAULT symbols passed without any reception (defined as 10 symbos by default in IDF)
// onlyOnTimeout parameter will define how onReceive will behave:
// Default: true -- The callback will only be called when RX Timeout happens.
// Whole stream of bytes will be ready for being read on the callback function at once.
// This option may lead to Rx Overflow depending on the Rx Buffer Size and number of bytes received in the streaming
// false -- The callback will be called when FIFO reaches 120 bytes and also on RX Timeout.
// The stream of incommig bytes will be "split" into blocks of 120 bytes on each callback.
// This option avoid any sort of Rx Overflow, but leaves the UART packet reassembling work to the Application.
void onReceive(OnReceiveCb function, bool onlyOnTimeout = false);
// onReceive will be called on error events (see hardwareSerial_error_t)
void onReceiveError(OnReceiveErrorCb function);
// eventQueueReset clears all events in the queue (the events that trigger onReceive and onReceiveError) - maybe usefull in some use cases
void eventQueueReset();
void begin(unsigned long baud, uint32_t config=SERIAL_8N1, int8_t rxPin=-1, int8_t txPin=-1, bool invert=false, unsigned long timeout_ms = 20000UL, uint8_t rxfifo_full_thrhd = 112);
void end(bool fullyTerminate = true);
void updateBaudRate(unsigned long baud);
int available(void);
int availableForWrite(void);
int peek(void);
int read(void);
size_t read(uint8_t *buffer, size_t size);
inline size_t read(char * buffer, size_t size)
{
return read((uint8_t*) buffer, size);
}
// Overrides Stream::readBytes() to be faster using IDF
size_t readBytes(uint8_t *buffer, size_t length);
size_t readBytes(char *buffer, size_t length)
{
return readBytes((uint8_t *) buffer, length);
}
void flush(void);
void flush( bool txOnly);
size_t write(uint8_t);
size_t write(const uint8_t *buffer, size_t size);
inline size_t write(const char * buffer, size_t size)
{
return write((uint8_t*) buffer, size);
}
inline size_t write(const char * s)
{
return write((uint8_t*) s, strlen(s));
}
inline size_t write(unsigned long n)
{
return write((uint8_t) n);
}
inline size_t write(long n)
{
return write((uint8_t) n);
}
inline size_t write(unsigned int n)
{
return write((uint8_t) n);
}
inline size_t write(int n)
{
return write((uint8_t) n);
}
uint32_t baudRate();
operator bool() const;
void setDebugOutput(bool);
void setRxInvert(bool);
// Negative Pin Number will keep it unmodified, thus this function can set individual pins
// SetPins shall be called after Serial begin()
bool setPins(int8_t rxPin, int8_t txPin, int8_t ctsPin = -1, int8_t rtsPin = -1);
// Enables or disables Hardware Flow Control using RTS and/or CTS pins (must use setAllPins() before)
bool setHwFlowCtrlMode(uint8_t mode = HW_FLOWCTRL_CTS_RTS, uint8_t threshold = 64); // 64 is half FIFO Length
// Used to set RS485 modes such as UART_MODE_RS485_HALF_DUPLEX for Auto RTS function on ESP32
bool setMode(uint8_t mode);
size_t setRxBufferSize(size_t new_size);
size_t setTxBufferSize(size_t new_size);
protected:
int _uart_nr;
uart_t* _uart;
size_t _rxBufferSize;
size_t _txBufferSize;
OnReceiveCb _onReceiveCB;
OnReceiveErrorCb _onReceiveErrorCB;
// _onReceive and _rxTimeout have be consistent when timeout is disabled
bool _onReceiveTimeout;
uint8_t _rxTimeout, _rxFIFOFull;
TaskHandle_t _eventTask;
#if !CONFIG_DISABLE_HAL_LOCKS
SemaphoreHandle_t _lock;
#endif
int8_t _rxPin, _txPin, _ctsPin, _rtsPin;
void _createEventTask(void *args);
void _destroyEventTask(void);
static void _uartEventTask(void *args);
};
extern void serialEventRun(void) __attribute__((weak));
#if !defined(NO_GLOBAL_INSTANCES) && !defined(NO_GLOBAL_SERIAL)
#ifndef ARDUINO_USB_CDC_ON_BOOT
#define ARDUINO_USB_CDC_ON_BOOT 0
#endif
#if ARDUINO_USB_CDC_ON_BOOT //Serial used for USB CDC
#if !ARDUINO_USB_MODE
#include "USB.h"
#include "USBCDC.h"
#endif
extern HardwareSerial Serial0;
#else
extern HardwareSerial Serial;
#endif
#if SOC_UART_NUM > 1
extern HardwareSerial Serial1;
#endif
#if SOC_UART_NUM > 2
extern HardwareSerial Serial2;
#endif
#endif
#endif // HardwareSerial_h

@ -1,64 +0,0 @@
/**
* base64.cpp
*
* Created on: 09.12.2015
*
* Copyright (c) 2015 Markus Sattler. All rights reserved.
* This file is part of the ESP31B core for Arduino.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "Arduino.h"
extern "C" {
#include "libb64/cdecode.h"
#include "libb64/cencode.h"
}
#include "base64.h"
/**
* convert input data to base64
* @param data const uint8_t *
* @param length size_t
* @return String
*/
String base64::encode(const uint8_t * data, size_t length)
{
size_t size = base64_encode_expected_len(length) + 1;
char * buffer = (char *) malloc(size);
if(buffer) {
base64_encodestate _state;
base64_init_encodestate(&_state);
int len = base64_encode_block((const char *) &data[0], length, &buffer[0], &_state);
len = base64_encode_blockend((buffer + len), &_state);
String base64 = String(buffer);
free(buffer);
return base64;
}
return String("-FAIL-");
}
/**
* convert input data to base64
* @param text const String&
* @return String
*/
String base64::encode(const String& text)
{
return base64::encode((uint8_t *) text.c_str(), text.length());
}

@ -1,13 +0,0 @@
#ifndef CORE_BASE64_H_
#define CORE_BASE64_H_
class base64
{
public:
static String encode(const uint8_t * data, size_t length);
static String encode(const String& text);
private:
};
#endif /* CORE_BASE64_H_ */

@ -1,534 +0,0 @@
/*
binary.h - Definitions for binary constants
Copyright (c) 2006 David A. Mellis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef Binary_h
#define Binary_h
#define B0 0
#define B00 0
#define B000 0
#define B0000 0
#define B00000 0
#define B000000 0
#define B0000000 0
#define B00000000 0
#define B1 1
#define B01 1
#define B001 1
#define B0001 1
#define B00001 1
#define B000001 1
#define B0000001 1
#define B00000001 1
#define B10 2
#define B010 2
#define B0010 2
#define B00010 2
#define B000010 2
#define B0000010 2
#define B00000010 2
#define B11 3
#define B011 3
#define B0011 3
#define B00011 3
#define B000011 3
#define B0000011 3
#define B00000011 3
#define B100 4
#define B0100 4
#define B00100 4
#define B000100 4
#define B0000100 4
#define B00000100 4
#define B101 5
#define B0101 5
#define B00101 5
#define B000101 5
#define B0000101 5
#define B00000101 5
#define B110 6
#define B0110 6
#define B00110 6
#define B000110 6
#define B0000110 6
#define B00000110 6
#define B111 7
#define B0111 7
#define B00111 7
#define B000111 7
#define B0000111 7
#define B00000111 7
#define B1000 8
#define B01000 8
#define B001000 8
#define B0001000 8
#define B00001000 8
#define B1001 9
#define B01001 9
#define B001001 9
#define B0001001 9
#define B00001001 9
#define B1010 10
#define B01010 10
#define B001010 10
#define B0001010 10
#define B00001010 10
#define B1011 11
#define B01011 11
#define B001011 11
#define B0001011 11
#define B00001011 11
#define B1100 12
#define B01100 12
#define B001100 12
#define B0001100 12
#define B00001100 12
#define B1101 13
#define B01101 13
#define B001101 13
#define B0001101 13
#define B00001101 13
#define B1110 14
#define B01110 14
#define B001110 14
#define B0001110 14
#define B00001110 14
#define B1111 15
#define B01111 15
#define B001111 15
#define B0001111 15
#define B00001111 15
#define B10000 16
#define B010000 16
#define B0010000 16
#define B00010000 16
#define B10001 17
#define B010001 17
#define B0010001 17
#define B00010001 17
#define B10010 18
#define B010010 18
#define B0010010 18
#define B00010010 18
#define B10011 19
#define B010011 19
#define B0010011 19
#define B00010011 19
#define B10100 20
#define B010100 20
#define B0010100 20
#define B00010100 20
#define B10101 21
#define B010101 21
#define B0010101 21
#define B00010101 21
#define B10110 22
#define B010110 22
#define B0010110 22
#define B00010110 22
#define B10111 23
#define B010111 23
#define B0010111 23
#define B00010111 23
#define B11000 24
#define B011000 24
#define B0011000 24
#define B00011000 24
#define B11001 25
#define B011001 25
#define B0011001 25
#define B00011001 25
#define B11010 26
#define B011010 26
#define B0011010 26
#define B00011010 26
#define B11011 27
#define B011011 27
#define B0011011 27
#define B00011011 27
#define B11100 28
#define B011100 28
#define B0011100 28
#define B00011100 28
#define B11101 29
#define B011101 29
#define B0011101 29
#define B00011101 29
#define B11110 30
#define B011110 30
#define B0011110 30
#define B00011110 30
#define B11111 31
#define B011111 31
#define B0011111 31
#define B00011111 31
#define B100000 32
#define B0100000 32
#define B00100000 32
#define B100001 33
#define B0100001 33
#define B00100001 33
#define B100010 34
#define B0100010 34
#define B00100010 34
#define B100011 35
#define B0100011 35
#define B00100011 35
#define B100100 36
#define B0100100 36
#define B00100100 36
#define B100101 37
#define B0100101 37
#define B00100101 37
#define B100110 38
#define B0100110 38
#define B00100110 38
#define B100111 39
#define B0100111 39
#define B00100111 39
#define B101000 40
#define B0101000 40
#define B00101000 40
#define B101001 41
#define B0101001 41
#define B00101001 41
#define B101010 42
#define B0101010 42
#define B00101010 42
#define B101011 43
#define B0101011 43
#define B00101011 43
#define B101100 44
#define B0101100 44
#define B00101100 44
#define B101101 45
#define B0101101 45
#define B00101101 45
#define B101110 46
#define B0101110 46
#define B00101110 46
#define B101111 47
#define B0101111 47
#define B00101111 47
#define B110000 48
#define B0110000 48
#define B00110000 48
#define B110001 49
#define B0110001 49
#define B00110001 49
#define B110010 50
#define B0110010 50
#define B00110010 50
#define B110011 51
#define B0110011 51
#define B00110011 51
#define B110100 52
#define B0110100 52
#define B00110100 52
#define B110101 53
#define B0110101 53
#define B00110101 53
#define B110110 54
#define B0110110 54
#define B00110110 54
#define B110111 55
#define B0110111 55
#define B00110111 55
#define B111000 56
#define B0111000 56
#define B00111000 56
#define B111001 57
#define B0111001 57
#define B00111001 57
#define B111010 58
#define B0111010 58
#define B00111010 58
#define B111011 59
#define B0111011 59
#define B00111011 59
#define B111100 60
#define B0111100 60
#define B00111100 60
#define B111101 61
#define B0111101 61
#define B00111101 61
#define B111110 62
#define B0111110 62
#define B00111110 62
#define B111111 63
#define B0111111 63
#define B00111111 63
#define B1000000 64
#define B01000000 64
#define B1000001 65
#define B01000001 65
#define B1000010 66
#define B01000010 66
#define B1000011 67
#define B01000011 67
#define B1000100 68
#define B01000100 68
#define B1000101 69
#define B01000101 69
#define B1000110 70
#define B01000110 70
#define B1000111 71
#define B01000111 71
#define B1001000 72
#define B01001000 72
#define B1001001 73
#define B01001001 73
#define B1001010 74
#define B01001010 74
#define B1001011 75
#define B01001011 75
#define B1001100 76
#define B01001100 76
#define B1001101 77
#define B01001101 77
#define B1001110 78
#define B01001110 78
#define B1001111 79
#define B01001111 79
#define B1010000 80
#define B01010000 80
#define B1010001 81
#define B01010001 81
#define B1010010 82
#define B01010010 82
#define B1010011 83
#define B01010011 83
#define B1010100 84
#define B01010100 84
#define B1010101 85
#define B01010101 85
#define B1010110 86
#define B01010110 86
#define B1010111 87
#define B01010111 87
#define B1011000 88
#define B01011000 88
#define B1011001 89
#define B01011001 89
#define B1011010 90
#define B01011010 90
#define B1011011 91
#define B01011011 91
#define B1011100 92
#define B01011100 92
#define B1011101 93
#define B01011101 93
#define B1011110 94
#define B01011110 94
#define B1011111 95
#define B01011111 95
#define B1100000 96
#define B01100000 96
#define B1100001 97
#define B01100001 97
#define B1100010 98
#define B01100010 98
#define B1100011 99
#define B01100011 99
#define B1100100 100
#define B01100100 100
#define B1100101 101
#define B01100101 101
#define B1100110 102
#define B01100110 102
#define B1100111 103
#define B01100111 103
#define B1101000 104
#define B01101000 104
#define B1101001 105
#define B01101001 105
#define B1101010 106
#define B01101010 106
#define B1101011 107
#define B01101011 107
#define B1101100 108
#define B01101100 108
#define B1101101 109
#define B01101101 109
#define B1101110 110
#define B01101110 110
#define B1101111 111
#define B01101111 111
#define B1110000 112
#define B01110000 112
#define B1110001 113
#define B01110001 113
#define B1110010 114
#define B01110010 114
#define B1110011 115
#define B01110011 115
#define B1110100 116
#define B01110100 116
#define B1110101 117
#define B01110101 117
#define B1110110 118
#define B01110110 118
#define B1110111 119
#define B01110111 119
#define B1111000 120
#define B01111000 120
#define B1111001 121
#define B01111001 121
#define B1111010 122
#define B01111010 122
#define B1111011 123
#define B01111011 123
#define B1111100 124
#define B01111100 124
#define B1111101 125
#define B01111101 125
#define B1111110 126
#define B01111110 126
#define B1111111 127
#define B01111111 127
#define B10000000 128
#define B10000001 129
#define B10000010 130
#define B10000011 131
#define B10000100 132
#define B10000101 133
#define B10000110 134
#define B10000111 135
#define B10001000 136
#define B10001001 137
#define B10001010 138
#define B10001011 139
#define B10001100 140
#define B10001101 141
#define B10001110 142
#define B10001111 143
#define B10010000 144
#define B10010001 145
#define B10010010 146
#define B10010011 147
#define B10010100 148
#define B10010101 149
#define B10010110 150
#define B10010111 151
#define B10011000 152
#define B10011001 153
#define B10011010 154
#define B10011011 155
#define B10011100 156
#define B10011101 157
#define B10011110 158
#define B10011111 159
#define B10100000 160
#define B10100001 161
#define B10100010 162
#define B10100011 163
#define B10100100 164
#define B10100101 165
#define B10100110 166
#define B10100111 167
#define B10101000 168
#define B10101001 169
#define B10101010 170
#define B10101011 171
#define B10101100 172
#define B10101101 173
#define B10101110 174
#define B10101111 175
#define B10110000 176
#define B10110001 177
#define B10110010 178
#define B10110011 179
#define B10110100 180
#define B10110101 181
#define B10110110 182
#define B10110111 183
#define B10111000 184
#define B10111001 185
#define B10111010 186
#define B10111011 187
#define B10111100 188
#define B10111101 189
#define B10111110 190
#define B10111111 191
#define B11000000 192
#define B11000001 193
#define B11000010 194
#define B11000011 195
#define B11000100 196
#define B11000101 197
#define B11000110 198
#define B11000111 199
#define B11001000 200
#define B11001001 201
#define B11001010 202
#define B11001011 203
#define B11001100 204
#define B11001101 205
#define B11001110 206
#define B11001111 207
#define B11010000 208
#define B11010001 209
#define B11010010 210
#define B11010011 211
#define B11010100 212
#define B11010101 213
#define B11010110 214
#define B11010111 215
#define B11011000 216
#define B11011001 217
#define B11011010 218
#define B11011011 219
#define B11011100 220
#define B11011101 221
#define B11011110 222
#define B11011111 223
#define B11100000 224
#define B11100001 225
#define B11100010 226
#define B11100011 227
#define B11100100 228
#define B11100101 229
#define B11100110 230
#define B11100111 231
#define B11101000 232
#define B11101001 233
#define B11101010 234
#define B11101011 235
#define B11101100 236
#define B11101101 237
#define B11101110 238
#define B11101111 239
#define B11110000 240
#define B11110001 241
#define B11110010 242
#define B11110011 243
#define B11110100 244
#define B11110101 245
#define B11110110 246
#define B11110111 247
#define B11111000 248
#define B11111001 249
#define B11111010 250
#define B11111011 251
#define B11111100 252
#define B11111101 253
#define B11111110 254
#define B11111111 255
#endif

@ -1,196 +0,0 @@
/*
cbuf.cpp - Circular buffer implementation
Copyright (c) 2014 Ivan Grokhotkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "cbuf.h"
cbuf::cbuf(size_t size) :
next(NULL), _size(size+1), _buf(new char[size+1]), _bufend(_buf + size + 1), _begin(_buf), _end(_begin)
{
}
cbuf::~cbuf()
{
delete[] _buf;
}
size_t cbuf::resizeAdd(size_t addSize)
{
return resize(_size + addSize);
}
size_t cbuf::resize(size_t newSize)
{
size_t bytes_available = available();
newSize += 1;
// not lose any data
// if data can be lost use remove or flush before resize
if((newSize < bytes_available) || (newSize == _size)) {
return _size;
}
char *newbuf = new char[newSize];
char *oldbuf = _buf;
if(!newbuf) {
return _size;
}
if(_buf) {
read(newbuf, bytes_available);
memset((newbuf + bytes_available), 0x00, (newSize - bytes_available));
}
_begin = newbuf;
_end = newbuf + bytes_available;
_bufend = newbuf + newSize;
_size = newSize;
_buf = newbuf;
delete[] oldbuf;
return _size;
}
size_t cbuf::available() const
{
if(_end >= _begin) {
return _end - _begin;
}
return _size - (_begin - _end);
}
size_t cbuf::size()
{
return _size;
}
size_t cbuf::room() const
{
if(_end >= _begin) {
return _size - (_end - _begin) - 1;
}
return _begin - _end - 1;
}
int cbuf::peek()
{
if(empty()) {
return -1;
}
return static_cast<int>(*_begin);
}
size_t cbuf::peek(char *dst, size_t size)
{
size_t bytes_available = available();
size_t size_to_read = (size < bytes_available) ? size : bytes_available;
size_t size_read = size_to_read;
char * begin = _begin;
if(_end < _begin && size_to_read > (size_t) (_bufend - _begin)) {
size_t top_size = _bufend - _begin;
memcpy(dst, _begin, top_size);
begin = _buf;
size_to_read -= top_size;
dst += top_size;
}
memcpy(dst, begin, size_to_read);
return size_read;
}
int cbuf::read()
{
if(empty()) {
return -1;
}
char result = *_begin;
_begin = wrap_if_bufend(_begin + 1);
return static_cast<int>(result);
}
size_t cbuf::read(char* dst, size_t size)
{
size_t bytes_available = available();
size_t size_to_read = (size < bytes_available) ? size : bytes_available;
size_t size_read = size_to_read;
if(_end < _begin && size_to_read > (size_t) (_bufend - _begin)) {
size_t top_size = _bufend - _begin;
memcpy(dst, _begin, top_size);
_begin = _buf;
size_to_read -= top_size;
dst += top_size;
}
memcpy(dst, _begin, size_to_read);
_begin = wrap_if_bufend(_begin + size_to_read);
return size_read;
}
size_t cbuf::write(char c)
{
if(full()) {
return 0;
}
*_end = c;
_end = wrap_if_bufend(_end + 1);
return 1;
}
size_t cbuf::write(const char* src, size_t size)
{
size_t bytes_available = room();
size_t size_to_write = (size < bytes_available) ? size : bytes_available;
size_t size_written = size_to_write;
if(_end >= _begin && size_to_write > (size_t) (_bufend - _end)) {
size_t top_size = _bufend - _end;
memcpy(_end, src, top_size);
_end = _buf;
size_to_write -= top_size;
src += top_size;
}
memcpy(_end, src, size_to_write);
_end = wrap_if_bufend(_end + size_to_write);
return size_written;
}
void cbuf::flush()
{
_begin = _buf;
_end = _buf;
}
size_t cbuf::remove(size_t size)
{
size_t bytes_available = available();
if(size >= bytes_available) {
flush();
return 0;
}
size_t size_to_remove = (size < bytes_available) ? size : bytes_available;
if(_end < _begin && size_to_remove > (size_t) (_bufend - _begin)) {
size_t top_size = _bufend - _begin;
_begin = _buf;
size_to_remove -= top_size;
}
_begin = wrap_if_bufend(_begin + size_to_remove);
return available();
}

@ -1,79 +0,0 @@
/*
cbuf.h - Circular buffer implementation
Copyright (c) 2014 Ivan Grokhotkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __cbuf_h
#define __cbuf_h
#include <stddef.h>
#include <stdint.h>
#include <string.h>
class cbuf
{
public:
cbuf(size_t size);
~cbuf();
size_t resizeAdd(size_t addSize);
size_t resize(size_t newSize);
size_t available() const;
size_t size();
size_t room() const;
inline bool empty() const
{
return _begin == _end;
}
inline bool full() const
{
return wrap_if_bufend(_end + 1) == _begin;
}
int peek();
size_t peek(char *dst, size_t size);
int read();
size_t read(char* dst, size_t size);
size_t write(char c);
size_t write(const char* src, size_t size);
void flush();
size_t remove(size_t size);
cbuf *next;
protected:
inline char* wrap_if_bufend(char* ptr) const
{
return (ptr == _bufend) ? _buf : ptr;
}
size_t _size;
char* _buf;
const char* _bufend;
char* _begin;
char* _end;
};
#endif//__cbuf_h

@ -1,4 +0,0 @@
#define ARDUINO_ESP32_GIT_VER 0x725146d1
#define ARDUINO_ESP32_GIT_DESC 2.0.12
#define ARDUINO_ESP32_RELEASE_2_0_12
#define ARDUINO_ESP32_RELEASE "2_0_12"

@ -1,281 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal-adc.h"
#include "driver/adc.h"
#include "esp_adc_cal.h"
#if SOC_DAC_SUPPORTED //ESP32, ESP32S2
#include "soc/dac_channel.h"
#include "soc/sens_reg.h"
#include "soc/rtc_io_reg.h"
#endif
#define DEFAULT_VREF 1100
static uint8_t __analogAttenuation = 3;//11db
static uint8_t __analogWidth = ADC_WIDTH_MAX - 1; //3 for ESP32/ESP32C3; 4 for ESP32S2
static uint8_t __analogReturnedWidth = SOC_ADC_MAX_BITWIDTH; //12 for ESP32/ESP32C3; 13 for ESP32S2
static uint8_t __analogClockDiv = 1;
static adc_attenuation_t __pin_attenuation[SOC_GPIO_PIN_COUNT];
static uint16_t __analogVRef = 0;
#if CONFIG_IDF_TARGET_ESP32
static uint8_t __analogVRefPin = 0;
#endif
static inline uint16_t mapResolution(uint16_t value)
{
uint8_t from = __analogWidth + 9;
if (from == __analogReturnedWidth) {
return value;
}
if (from > __analogReturnedWidth) {
return value >> (from - __analogReturnedWidth);
}
return value << (__analogReturnedWidth - from);
}
void __analogSetClockDiv(uint8_t clockDiv){
if(!clockDiv){
clockDiv = 1;
}
__analogClockDiv = clockDiv;
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
adc_set_clk_div(__analogClockDiv);
#endif
}
void __analogSetAttenuation(adc_attenuation_t attenuation)
{
__analogAttenuation = attenuation & 3;
}
#if CONFIG_IDF_TARGET_ESP32
void __analogSetWidth(uint8_t bits){
if(bits < 9){
bits = 9;
} else if(bits > 12){
bits = 12;
}
__analogWidth = bits - 9;
adc1_config_width(__analogWidth);
}
#endif
void __analogInit(){
static bool initialized = false;
if(initialized){
return;
}
initialized = true;
__analogSetClockDiv(__analogClockDiv);
#if CONFIG_IDF_TARGET_ESP32
__analogSetWidth(__analogWidth + 9);//in bits
#endif
for(int i=0; i<SOC_GPIO_PIN_COUNT; i++){
__pin_attenuation[i] = ADC_ATTENDB_MAX;
}
}
void __analogSetPinAttenuation(uint8_t pin, adc_attenuation_t attenuation)
{
int8_t channel = digitalPinToAnalogChannel(pin);
if(channel < 0 || attenuation > 3){
return ;
}
if(channel > (SOC_ADC_MAX_CHANNEL_NUM - 1)){
adc2_config_channel_atten(channel - SOC_ADC_MAX_CHANNEL_NUM, attenuation);
} else {
adc1_config_channel_atten(channel, attenuation);
}
__analogInit();
if((__pin_attenuation[pin] != ADC_ATTENDB_MAX) || (attenuation != __analogAttenuation)){
__pin_attenuation[pin] = attenuation;
}
}
bool __adcAttachPin(uint8_t pin){
int8_t channel = digitalPinToAnalogChannel(pin);
if(channel < 0){
log_e("Pin %u is not ADC pin!", pin);
return false;
}
__analogInit();
int8_t pad = digitalPinToTouchChannel(pin);
if(pad >= 0){
#if CONFIG_IDF_TARGET_ESP32
uint32_t touch = READ_PERI_REG(SENS_SAR_TOUCH_ENABLE_REG);
if(touch & (1 << pad)){
touch &= ~((1 << (pad + SENS_TOUCH_PAD_OUTEN2_S))
| (1 << (pad + SENS_TOUCH_PAD_OUTEN1_S))
| (1 << (pad + SENS_TOUCH_PAD_WORKEN_S)));
WRITE_PERI_REG(SENS_SAR_TOUCH_ENABLE_REG, touch);
}
#endif
}
#if SOC_DAC_SUPPORTED
else if(pin == DAC_CHANNEL_1_GPIO_NUM){
CLEAR_PERI_REG_MASK(RTC_IO_PAD_DAC1_REG, RTC_IO_PDAC1_XPD_DAC | RTC_IO_PDAC1_DAC_XPD_FORCE);//stop dac1
} else if(pin == DAC_CHANNEL_2_GPIO_NUM){
CLEAR_PERI_REG_MASK(RTC_IO_PAD_DAC2_REG, RTC_IO_PDAC2_XPD_DAC | RTC_IO_PDAC2_DAC_XPD_FORCE);//stop dac2
}
#endif
pinMode(pin, ANALOG);
__analogSetPinAttenuation(pin, (__pin_attenuation[pin] != ADC_ATTENDB_MAX)?__pin_attenuation[pin]:__analogAttenuation);
return true;
}
void __analogReadResolution(uint8_t bits)
{
if(!bits || bits > 16){
return;
}
__analogReturnedWidth = bits;
#if CONFIG_IDF_TARGET_ESP32
__analogSetWidth(bits); // hadware from 9 to 12
#endif
}
uint16_t __analogRead(uint8_t pin)
{
int8_t channel = digitalPinToAnalogChannel(pin);
int value = 0;
esp_err_t r = ESP_OK;
if(channel < 0){
log_e("Pin %u is not ADC pin!", pin);
return value;
}
__adcAttachPin(pin);
if(channel > (SOC_ADC_MAX_CHANNEL_NUM - 1)){
channel -= SOC_ADC_MAX_CHANNEL_NUM;
r = adc2_get_raw( channel, __analogWidth, &value);
if ( r == ESP_OK ) {
return mapResolution(value);
} else if ( r == ESP_ERR_INVALID_STATE ) {
log_e("GPIO%u: %s: ADC2 not initialized yet.", pin, esp_err_to_name(r));
} else if ( r == ESP_ERR_TIMEOUT ) {
log_e("GPIO%u: %s: ADC2 is in use by Wi-Fi. Please see https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/adc.html#adc-limitations for more info", pin, esp_err_to_name(r));
} else {
log_e("GPIO%u: %s", pin, esp_err_to_name(r));
}
} else {
value = adc1_get_raw(channel);
return mapResolution(value);
}
return mapResolution(value);
}
uint32_t __analogReadMilliVolts(uint8_t pin){
int8_t channel = digitalPinToAnalogChannel(pin);
if(channel < 0){
log_e("Pin %u is not ADC pin!", pin);
return 0;
}
if(!__analogVRef){
if (esp_adc_cal_check_efuse(ESP_ADC_CAL_VAL_EFUSE_TP) == ESP_OK) {
log_d("eFuse Two Point: Supported");
__analogVRef = DEFAULT_VREF;
}
if (esp_adc_cal_check_efuse(ESP_ADC_CAL_VAL_EFUSE_VREF) == ESP_OK) {
log_d("eFuse Vref: Supported");
__analogVRef = DEFAULT_VREF;
}
if(!__analogVRef){
__analogVRef = DEFAULT_VREF;
#if CONFIG_IDF_TARGET_ESP32
if(__analogVRefPin){
esp_adc_cal_characteristics_t chars;
if(adc_vref_to_gpio(ADC_UNIT_2, __analogVRefPin) == ESP_OK){
__analogVRef = __analogRead(__analogVRefPin);
esp_adc_cal_characterize(1, __analogAttenuation, __analogWidth, DEFAULT_VREF, &chars);
__analogVRef = esp_adc_cal_raw_to_voltage(__analogVRef, &chars);
log_d("Vref to GPIO%u: %u", __analogVRefPin, __analogVRef);
}
}
#endif
}
}
uint8_t unit = 1;
if(channel > (SOC_ADC_MAX_CHANNEL_NUM - 1)){
unit = 2;
}
uint16_t adc_reading = __analogRead(pin);
uint8_t atten = __analogAttenuation;
if (__pin_attenuation[pin] != ADC_ATTENDB_MAX){
atten = __pin_attenuation[pin];
}
esp_adc_cal_characteristics_t chars = {};
esp_adc_cal_value_t val_type = esp_adc_cal_characterize(unit, atten, __analogWidth, __analogVRef, &chars);
static bool print_chars_info = true;
if(print_chars_info)
{
if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) {
log_i("ADC%u: Characterized using Two Point Value: %u\n", unit, chars.vref);
}
else if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) {
log_i("ADC%u: Characterized using eFuse Vref: %u\n", unit, chars.vref);
}
#if CONFIG_IDF_TARGET_ESP32
else if(__analogVRef != DEFAULT_VREF){
log_i("ADC%u: Characterized using Vref to GPIO%u: %u\n", unit, __analogVRefPin, chars.vref);
}
#endif
else {
log_i("ADC%u: Characterized using Default Vref: %u\n", unit, chars.vref);
}
print_chars_info = false;
}
return esp_adc_cal_raw_to_voltage((uint32_t)adc_reading, &chars);
}
#if CONFIG_IDF_TARGET_ESP32
void __analogSetVRefPin(uint8_t pin){
if(pin <25 || pin > 27){
pin = 0;
}
__analogVRefPin = pin;
}
int __hallRead() //hall sensor using idf read
{
pinMode(36, ANALOG);
pinMode(39, ANALOG);
__analogSetWidth(12);
return hall_sensor_read();
}
#endif
extern uint16_t analogRead(uint8_t pin) __attribute__ ((weak, alias("__analogRead")));
extern uint32_t analogReadMilliVolts(uint8_t pin) __attribute__ ((weak, alias("__analogReadMilliVolts")));
extern void analogReadResolution(uint8_t bits) __attribute__ ((weak, alias("__analogReadResolution")));
extern void analogSetClockDiv(uint8_t clockDiv) __attribute__ ((weak, alias("__analogSetClockDiv")));
extern void analogSetAttenuation(adc_attenuation_t attenuation) __attribute__ ((weak, alias("__analogSetAttenuation")));
extern void analogSetPinAttenuation(uint8_t pin, adc_attenuation_t attenuation) __attribute__ ((weak, alias("__analogSetPinAttenuation")));
extern bool adcAttachPin(uint8_t pin) __attribute__ ((weak, alias("__adcAttachPin")));
#if CONFIG_IDF_TARGET_ESP32
extern void analogSetVRefPin(uint8_t pin) __attribute__ ((weak, alias("__analogSetVRefPin")));
extern void analogSetWidth(uint8_t bits) __attribute__ ((weak, alias("__analogSetWidth")));
extern int hallRead() __attribute__ ((weak, alias("__hallRead")));
#endif

@ -1,104 +0,0 @@
/*
Arduino.h - Main include file for the Arduino SDK
Copyright (c) 2005-2013 Arduino Team. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef MAIN_ESP32_HAL_ADC_H_
#define MAIN_ESP32_HAL_ADC_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "esp32-hal.h"
typedef enum {
ADC_0db,
ADC_2_5db,
ADC_6db,
ADC_11db,
ADC_ATTENDB_MAX
} adc_attenuation_t;
/*
* Get ADC value for pin
* */
uint16_t analogRead(uint8_t pin);
/*
* Get MilliVolts value for pin
* */
uint32_t analogReadMilliVolts(uint8_t pin);
/*
* Set the resolution of analogRead return values. Default is 12 bits (range from 0 to 4096).
* If between 9 and 12, it will equal the set hardware resolution, else value will be shifted.
* Range is 1 - 16
*
* Note: compatibility with Arduino SAM
*/
void analogReadResolution(uint8_t bits);
/*
* Set the divider for the ADC clock.
* Default is 1
* Range is 1 - 255
* */
void analogSetClockDiv(uint8_t clockDiv);
/*
* Set the attenuation for all channels
* Default is 11db
* */
void analogSetAttenuation(adc_attenuation_t attenuation);
/*
* Set the attenuation for particular pin
* Default is 11db
* */
void analogSetPinAttenuation(uint8_t pin, adc_attenuation_t attenuation);
/*
* Attach pin to ADC (will also clear any other analog mode that could be on)
* */
bool adcAttachPin(uint8_t pin);
#if CONFIG_IDF_TARGET_ESP32
/*
* Sets the sample bits and read resolution
* Default is 12bit (0 - 4095)
* Range is 9 - 12
* */
void analogSetWidth(uint8_t bits);
/*
* Set pin to use for ADC calibration if the esp is not already calibrated (25, 26 or 27)
* */
void analogSetVRefPin(uint8_t pin);
/*
* Get value for HALL sensor (without LNA)
* connected to pins 36(SVP) and 39(SVN)
* */
int hallRead();
#endif
#ifdef __cplusplus
}
#endif
#endif /* MAIN_ESP32_HAL_ADC_H_ */

@ -1,105 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal-bt.h"
#ifdef CONFIG_BT_ENABLED
#if CONFIG_IDF_TARGET_ESP32
bool btInUse(){ return true; }
#else
// user may want to change it to free resources
__attribute__((weak)) bool btInUse(){ return true; }
#endif
#include "esp_bt.h"
#ifdef CONFIG_BTDM_CONTROLLER_MODE_BTDM
#define BT_MODE ESP_BT_MODE_BTDM
#elif defined(CONFIG_BTDM_CONTROLLER_MODE_BR_EDR_ONLY)
#define BT_MODE ESP_BT_MODE_CLASSIC_BT
#else
#define BT_MODE ESP_BT_MODE_BLE
#endif
bool btStarted(){
return (esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_ENABLED);
}
bool btStart(){
esp_bt_controller_config_t cfg = BT_CONTROLLER_INIT_CONFIG_DEFAULT();
if(esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_ENABLED){
return true;
}
if(esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_IDLE){
esp_bt_controller_init(&cfg);
while(esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_IDLE){}
}
if(esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_INITED){
if (esp_bt_controller_enable(BT_MODE)) {
log_e("BT Enable failed");
return false;
}
}
if(esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_ENABLED){
return true;
}
log_e("BT Start failed");
return false;
}
bool btStop(){
if(esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_IDLE){
return true;
}
if(esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_ENABLED){
if (esp_bt_controller_disable()) {
log_e("BT Disable failed");
return false;
}
while(esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_ENABLED);
}
if(esp_bt_controller_get_status() == ESP_BT_CONTROLLER_STATUS_INITED){
if (esp_bt_controller_deinit()) {
log_e("BT deint failed");
return false;
}
vTaskDelay(1);
if (esp_bt_controller_get_status() != ESP_BT_CONTROLLER_STATUS_IDLE) {
return false;
}
return true;
}
log_e("BT Stop failed");
return false;
}
#else // CONFIG_BT_ENABLED
bool btStarted()
{
return false;
}
bool btStart()
{
return false;
}
bool btStop()
{
return false;
}
#endif // CONFIG_BT_ENABLED

@ -1,32 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _ESP32_ESP32_HAL_BT_H_
#define _ESP32_ESP32_HAL_BT_H_
#include "esp32-hal.h"
#ifdef __cplusplus
extern "C" {
#endif
bool btStarted();
bool btStart();
bool btStop();
#ifdef __cplusplus
}
#endif
#endif /* _ESP32_ESP32_HAL_BT_H_ */

@ -1,262 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/task.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/apb_ctrl_reg.h"
#include "soc/efuse_reg.h"
#include "esp32-hal.h"
#include "esp32-hal-cpu.h"
#include "esp_system.h"
#ifdef ESP_IDF_VERSION_MAJOR // IDF 4+
#if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4
#include "freertos/xtensa_timer.h"
#include "esp32/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "freertos/xtensa_timer.h"
#include "esp32s2/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "freertos/xtensa_timer.h"
#include "esp32s3/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/rom/rtc.h"
#else
#error Target CONFIG_IDF_TARGET is not supported
#endif
#else // ESP32 Before IDF 4.0
#include "rom/rtc.h"
#endif
typedef struct apb_change_cb_s {
struct apb_change_cb_s * prev;
struct apb_change_cb_s * next;
void * arg;
apb_change_cb_t cb;
} apb_change_t;
static apb_change_t * apb_change_callbacks = NULL;
static xSemaphoreHandle apb_change_lock = NULL;
static void initApbChangeCallback(){
static volatile bool initialized = false;
if(!initialized){
initialized = true;
apb_change_lock = xSemaphoreCreateMutex();
if(!apb_change_lock){
initialized = false;
}
}
}
static void triggerApbChangeCallback(apb_change_ev_t ev_type, uint32_t old_apb, uint32_t new_apb){
initApbChangeCallback();
xSemaphoreTake(apb_change_lock, portMAX_DELAY);
apb_change_t * r = apb_change_callbacks;
if( r != NULL ){
if(ev_type == APB_BEFORE_CHANGE )
while(r != NULL){
r->cb(r->arg, ev_type, old_apb, new_apb);
r=r->next;
}
else { // run backwards through chain
while(r->next != NULL) r = r->next; // find first added
while( r != NULL){
r->cb(r->arg, ev_type, old_apb, new_apb);
r=r->prev;
}
}
}
xSemaphoreGive(apb_change_lock);
}
bool addApbChangeCallback(void * arg, apb_change_cb_t cb){
initApbChangeCallback();
apb_change_t * c = (apb_change_t*)malloc(sizeof(apb_change_t));
if(!c){
log_e("Callback Object Malloc Failed");
return false;
}
c->next = NULL;
c->prev = NULL;
c->arg = arg;
c->cb = cb;
xSemaphoreTake(apb_change_lock, portMAX_DELAY);
if(apb_change_callbacks == NULL){
apb_change_callbacks = c;
} else {
apb_change_t * r = apb_change_callbacks;
// look for duplicate callbacks
while( (r != NULL ) && !((r->cb == cb) && ( r->arg == arg))) r = r->next;
if (r) {
log_e("duplicate func=%8p arg=%8p",c->cb,c->arg);
free(c);
xSemaphoreGive(apb_change_lock);
return false;
}
else {
c->next = apb_change_callbacks;
apb_change_callbacks-> prev = c;
apb_change_callbacks = c;
}
}
xSemaphoreGive(apb_change_lock);
return true;
}
bool removeApbChangeCallback(void * arg, apb_change_cb_t cb){
initApbChangeCallback();
xSemaphoreTake(apb_change_lock, portMAX_DELAY);
apb_change_t * r = apb_change_callbacks;
// look for matching callback
while( (r != NULL ) && !((r->cb == cb) && ( r->arg == arg))) r = r->next;
if ( r == NULL ) {
log_e("not found func=%8p arg=%8p",cb,arg);
xSemaphoreGive(apb_change_lock);
return false;
}
else {
// patch links
if(r->prev) r->prev->next = r->next;
else { // this is first link
apb_change_callbacks = r->next;
}
if(r->next) r->next->prev = r->prev;
free(r);
}
xSemaphoreGive(apb_change_lock);
return true;
}
static uint32_t calculateApb(rtc_cpu_freq_config_t * conf){
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3
return APB_CLK_FREQ;
#else
if(conf->freq_mhz >= 80){
return 80 * MHZ;
}
return (conf->source_freq_mhz * MHZ) / conf->div;
#endif
}
void esp_timer_impl_update_apb_freq(uint32_t apb_ticks_per_us); //private in IDF
bool setCpuFrequencyMhz(uint32_t cpu_freq_mhz){
rtc_cpu_freq_config_t conf, cconf;
uint32_t capb, apb;
//Get XTAL Frequency and calculate min CPU MHz
rtc_xtal_freq_t xtal = rtc_clk_xtal_freq_get();
#if CONFIG_IDF_TARGET_ESP32
if(xtal > RTC_XTAL_FREQ_AUTO){
if(xtal < RTC_XTAL_FREQ_40M) {
if(cpu_freq_mhz <= xtal && cpu_freq_mhz != xtal && cpu_freq_mhz != (xtal/2)){
log_e("Bad frequency: %u MHz! Options are: 240, 160, 80, %u and %u MHz", cpu_freq_mhz, xtal, xtal/2);
return false;
}
} else if(cpu_freq_mhz <= xtal && cpu_freq_mhz != xtal && cpu_freq_mhz != (xtal/2) && cpu_freq_mhz != (xtal/4)){
log_e("Bad frequency: %u MHz! Options are: 240, 160, 80, %u, %u and %u MHz", cpu_freq_mhz, xtal, xtal/2, xtal/4);
return false;
}
}
#endif
if(cpu_freq_mhz > xtal && cpu_freq_mhz != 240 && cpu_freq_mhz != 160 && cpu_freq_mhz != 80){
if(xtal >= RTC_XTAL_FREQ_40M){
log_e("Bad frequency: %u MHz! Options are: 240, 160, 80, %u, %u and %u MHz", cpu_freq_mhz, xtal, xtal/2, xtal/4);
} else {
log_e("Bad frequency: %u MHz! Options are: 240, 160, 80, %u and %u MHz", cpu_freq_mhz, xtal, xtal/2);
}
return false;
}
#if CONFIG_IDF_TARGET_ESP32
//check if cpu supports the frequency
if(cpu_freq_mhz == 240){
//Check if ESP32 is rated for a CPU frequency of 160MHz only
if (REG_GET_BIT(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_CPU_FREQ_RATED) &&
REG_GET_BIT(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_CPU_FREQ_LOW)) {
log_e("Can not switch to 240 MHz! Chip CPU frequency rated for 160MHz.");
cpu_freq_mhz = 160;
}
}
#endif
//Get current CPU clock configuration
rtc_clk_cpu_freq_get_config(&cconf);
//return if frequency has not changed
if(cconf.freq_mhz == cpu_freq_mhz){
return true;
}
//Get configuration for the new CPU frequency
if(!rtc_clk_cpu_freq_mhz_to_config(cpu_freq_mhz, &conf)){
log_e("CPU clock could not be set to %u MHz", cpu_freq_mhz);
return false;
}
//Current APB
capb = calculateApb(&cconf);
//New APB
apb = calculateApb(&conf);
//Call peripheral functions before the APB change
if(apb_change_callbacks){
triggerApbChangeCallback(APB_BEFORE_CHANGE, capb, apb);
}
//Make the frequency change
rtc_clk_cpu_freq_set_config_fast(&conf);
if(capb != apb){
//Update REF_TICK (uncomment if REF_TICK is different than 1MHz)
//if(conf.freq_mhz < 80){
// ESP_REG(APB_CTRL_XTAL_TICK_CONF_REG) = conf.freq_mhz / (REF_CLK_FREQ / MHZ) - 1;
// }
//Update APB Freq REG
rtc_clk_apb_freq_update(apb);
//Update esp_timer divisor
esp_timer_impl_update_apb_freq(apb / MHZ);
}
//Update FreeRTOS Tick Divisor
#if CONFIG_IDF_TARGET_ESP32C3
#elif CONFIG_IDF_TARGET_ESP32S3
#else
uint32_t fcpu = (conf.freq_mhz >= 80)?(conf.freq_mhz * MHZ):(apb);
_xt_tick_divisor = fcpu / XT_TICK_PER_SEC;
#endif
//Call peripheral functions after the APB change
if(apb_change_callbacks){
triggerApbChangeCallback(APB_AFTER_CHANGE, capb, apb);
}
log_d("%s: %u / %u = %u Mhz, APB: %u Hz", (conf.source == RTC_CPU_FREQ_SRC_PLL)?"PLL":((conf.source == RTC_CPU_FREQ_SRC_APLL)?"APLL":((conf.source == RTC_CPU_FREQ_SRC_XTAL)?"XTAL":"8M")), conf.source_freq_mhz, conf.div, conf.freq_mhz, apb);
return true;
}
uint32_t getCpuFrequencyMhz(){
rtc_cpu_freq_config_t conf;
rtc_clk_cpu_freq_get_config(&conf);
return conf.freq_mhz;
}
uint32_t getXtalFrequencyMhz(){
return rtc_clk_xtal_freq_get();
}
uint32_t getApbFrequency(){
rtc_cpu_freq_config_t conf;
rtc_clk_cpu_freq_get_config(&conf);
return calculateApb(&conf);
}

@ -1,48 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _ESP32_HAL_CPU_H_
#define _ESP32_HAL_CPU_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
typedef enum { APB_BEFORE_CHANGE, APB_AFTER_CHANGE } apb_change_ev_t;
typedef void (* apb_change_cb_t)(void * arg, apb_change_ev_t ev_type, uint32_t old_apb, uint32_t new_apb);
bool addApbChangeCallback(void * arg, apb_change_cb_t cb);
bool removeApbChangeCallback(void * arg, apb_change_cb_t cb);
//function takes the following frequencies as valid values:
// 240, 160, 80 <<< For all XTAL types
// 40, 20, 10 <<< For 40MHz XTAL
// 26, 13 <<< For 26MHz XTAL
// 24, 12 <<< For 24MHz XTAL
bool setCpuFrequencyMhz(uint32_t cpu_freq_mhz);
uint32_t getCpuFrequencyMhz(); // In MHz
uint32_t getXtalFrequencyMhz(); // In MHz
uint32_t getApbFrequency(); // In Hz
#ifdef __cplusplus
}
#endif
#endif /* _ESP32_HAL_CPU_H_ */

@ -1,49 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal.h"
#include "soc/soc_caps.h"
#ifndef SOC_DAC_SUPPORTED
#define NODAC
#else
#include "soc/dac_channel.h"
#include "driver/dac_common.h"
void ARDUINO_ISR_ATTR __dacWrite(uint8_t pin, uint8_t value)
{
if(pin < DAC_CHANNEL_1_GPIO_NUM || pin > DAC_CHANNEL_2_GPIO_NUM){
return;//not dac pin
}
uint8_t channel = pin - DAC_CHANNEL_1_GPIO_NUM;
dac_output_enable(channel);
dac_output_voltage(channel, value);
}
void ARDUINO_ISR_ATTR __dacDisable(uint8_t pin)
{
if(pin < DAC_CHANNEL_1_GPIO_NUM || pin > DAC_CHANNEL_2_GPIO_NUM){
return;//not dac pin
}
uint8_t channel = pin - DAC_CHANNEL_1_GPIO_NUM;
dac_output_disable(channel);
}
extern void dacWrite(uint8_t pin, uint8_t value) __attribute__ ((weak, alias("__dacWrite")));
extern void dacDisable(uint8_t pin) __attribute__ ((weak, alias("__dacDisable")));
#endif

@ -1,37 +0,0 @@
/*
Arduino.h - Main include file for the Arduino SDK
Copyright (c) 2005-2013 Arduino Team. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef MAIN_ESP32_HAL_DAC_H_
#define MAIN_ESP32_HAL_DAC_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "esp32-hal.h"
#include "driver/gpio.h"
void dacWrite(uint8_t pin, uint8_t value);
void dacDisable(uint8_t pin);
#ifdef __cplusplus
}
#endif
#endif /* MAIN_ESP32_HAL_DAC_H_ */

@ -1,236 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal-gpio.h"
#include "hal/gpio_hal.h"
#include "soc/soc_caps.h"
// It fixes lack of pin definition for S3 and for any future SoC
// this function works for ESP32, ESP32-S2 and ESP32-S3 - including the C3, it will return -1 for any pin
#if SOC_TOUCH_SENSOR_NUM > 0
#include "soc/touch_sensor_periph.h"
int8_t digitalPinToTouchChannel(uint8_t pin)
{
int8_t ret = -1;
if (pin < SOC_GPIO_PIN_COUNT) {
for (uint8_t i = 0; i < SOC_TOUCH_SENSOR_NUM; i++) {
if (touch_sensor_channel_io_map[i] == pin) {
ret = i;
break;
}
}
}
return ret;
}
#else
// No Touch Sensor available
int8_t digitalPinToTouchChannel(uint8_t pin)
{
return -1;
}
#endif
#ifdef SOC_ADC_SUPPORTED
#include "soc/adc_periph.h"
int8_t digitalPinToAnalogChannel(uint8_t pin)
{
uint8_t channel = 0;
if (pin < SOC_GPIO_PIN_COUNT) {
for (uint8_t i = 0; i < SOC_ADC_PERIPH_NUM; i++) {
for (uint8_t j = 0; j < SOC_ADC_MAX_CHANNEL_NUM; j++) {
if (adc_channel_io_map[i][j] == pin) {
return channel;
}
channel++;
}
}
}
return -1;
}
int8_t analogChannelToDigitalPin(uint8_t channel)
{
if (channel >= (SOC_ADC_PERIPH_NUM * SOC_ADC_MAX_CHANNEL_NUM)) {
return -1;
}
uint8_t adc_unit = (channel / SOC_ADC_MAX_CHANNEL_NUM);
uint8_t adc_chan = (channel % SOC_ADC_MAX_CHANNEL_NUM);
return adc_channel_io_map[adc_unit][adc_chan];
}
#else
// No Analog channels availible
int8_t analogChannelToDigitalPin(uint8_t channel)
{
return -1;
}
#endif
typedef void (*voidFuncPtr)(void);
typedef void (*voidFuncPtrArg)(void*);
typedef struct {
voidFuncPtr fn;
void* arg;
bool functional;
} InterruptHandle_t;
static InterruptHandle_t __pinInterruptHandlers[SOC_GPIO_PIN_COUNT] = {0,};
#include "driver/rtc_io.h"
extern void ARDUINO_ISR_ATTR __pinMode(uint8_t pin, uint8_t mode)
{
#ifdef RGB_BUILTIN
if (pin == RGB_BUILTIN){
__pinMode(RGB_BUILTIN-SOC_GPIO_PIN_COUNT, mode);
return;
}
#endif
if (!GPIO_IS_VALID_GPIO(pin)) {
log_e("Invalid pin selected");
return;
}
gpio_hal_context_t gpiohal;
gpiohal.dev = GPIO_LL_GET_HW(GPIO_PORT_0);
gpio_config_t conf = {
.pin_bit_mask = (1ULL<<pin), /*!< GPIO pin: set with bit mask, each bit maps to a GPIO */
.mode = GPIO_MODE_DISABLE, /*!< GPIO mode: set input/output mode */
.pull_up_en = GPIO_PULLUP_DISABLE, /*!< GPIO pull-up */
.pull_down_en = GPIO_PULLDOWN_DISABLE, /*!< GPIO pull-down */
.intr_type = gpiohal.dev->pin[pin].int_type /*!< GPIO interrupt type - previously set */
};
if (mode < 0x20) {//io
conf.mode = mode & (INPUT | OUTPUT);
if (mode & OPEN_DRAIN) {
conf.mode |= GPIO_MODE_DEF_OD;
}
if (mode & PULLUP) {
conf.pull_up_en = GPIO_PULLUP_ENABLE;
}
if (mode & PULLDOWN) {
conf.pull_down_en = GPIO_PULLDOWN_ENABLE;
}
}
if(gpio_config(&conf) != ESP_OK)
{
log_e("GPIO config failed");
return;
}
}
extern void ARDUINO_ISR_ATTR __digitalWrite(uint8_t pin, uint8_t val)
{
#ifdef RGB_BUILTIN
if(pin == RGB_BUILTIN){
//use RMT to set all channels on/off
const uint8_t comm_val = val != 0 ? RGB_BRIGHTNESS : 0;
neopixelWrite(RGB_BUILTIN, comm_val, comm_val, comm_val);
return;
}
#endif
gpio_set_level((gpio_num_t)pin, val);
}
extern int ARDUINO_ISR_ATTR __digitalRead(uint8_t pin)
{
return gpio_get_level((gpio_num_t)pin);
}
static void ARDUINO_ISR_ATTR __onPinInterrupt(void * arg) {
InterruptHandle_t * isr = (InterruptHandle_t*)arg;
if(isr->fn) {
if(isr->arg){
((voidFuncPtrArg)isr->fn)(isr->arg);
} else {
isr->fn();
}
}
}
extern void cleanupFunctional(void* arg);
extern void __attachInterruptFunctionalArg(uint8_t pin, voidFuncPtrArg userFunc, void * arg, int intr_type, bool functional)
{
static bool interrupt_initialized = false;
// makes sure that pin -1 (255) will never work -- this follows Arduino standard
if (pin >= SOC_GPIO_PIN_COUNT) return;
if(!interrupt_initialized) {
esp_err_t err = gpio_install_isr_service((int)ARDUINO_ISR_FLAG);
interrupt_initialized = (err == ESP_OK) || (err == ESP_ERR_INVALID_STATE);
}
if(!interrupt_initialized) {
log_e("GPIO ISR Service Failed To Start");
return;
}
// if new attach without detach remove old info
if (__pinInterruptHandlers[pin].functional && __pinInterruptHandlers[pin].arg)
{
cleanupFunctional(__pinInterruptHandlers[pin].arg);
}
__pinInterruptHandlers[pin].fn = (voidFuncPtr)userFunc;
__pinInterruptHandlers[pin].arg = arg;
__pinInterruptHandlers[pin].functional = functional;
gpio_set_intr_type((gpio_num_t)pin, (gpio_int_type_t)(intr_type & 0x7));
if(intr_type & 0x8){
gpio_wakeup_enable((gpio_num_t)pin, (gpio_int_type_t)(intr_type & 0x7));
}
gpio_isr_handler_add((gpio_num_t)pin, __onPinInterrupt, &__pinInterruptHandlers[pin]);
//FIX interrupts on peripherals outputs (eg. LEDC,...)
//Enable input in GPIO register
gpio_hal_context_t gpiohal;
gpiohal.dev = GPIO_LL_GET_HW(GPIO_PORT_0);
gpio_hal_input_enable(&gpiohal, pin);
}
extern void __attachInterruptArg(uint8_t pin, voidFuncPtrArg userFunc, void * arg, int intr_type)
{
__attachInterruptFunctionalArg(pin, userFunc, arg, intr_type, false);
}
extern void __attachInterrupt(uint8_t pin, voidFuncPtr userFunc, int intr_type) {
__attachInterruptFunctionalArg(pin, (voidFuncPtrArg)userFunc, NULL, intr_type, false);
}
extern void __detachInterrupt(uint8_t pin)
{
gpio_isr_handler_remove((gpio_num_t)pin); //remove handle and disable isr for pin
gpio_wakeup_disable((gpio_num_t)pin);
if (__pinInterruptHandlers[pin].functional && __pinInterruptHandlers[pin].arg)
{
cleanupFunctional(__pinInterruptHandlers[pin].arg);
}
__pinInterruptHandlers[pin].fn = NULL;
__pinInterruptHandlers[pin].arg = NULL;
__pinInterruptHandlers[pin].functional = false;
gpio_set_intr_type((gpio_num_t)pin, GPIO_INTR_DISABLE);
}
extern void pinMode(uint8_t pin, uint8_t mode) __attribute__ ((weak, alias("__pinMode")));
extern void digitalWrite(uint8_t pin, uint8_t val) __attribute__ ((weak, alias("__digitalWrite")));
extern int digitalRead(uint8_t pin) __attribute__ ((weak, alias("__digitalRead")));
extern void attachInterrupt(uint8_t pin, voidFuncPtr handler, int mode) __attribute__ ((weak, alias("__attachInterrupt")));
extern void attachInterruptArg(uint8_t pin, voidFuncPtrArg handler, void * arg, int mode) __attribute__ ((weak, alias("__attachInterruptArg")));
extern void detachInterrupt(uint8_t pin) __attribute__ ((weak, alias("__detachInterrupt")));

@ -1,90 +0,0 @@
/*
Arduino.h - Main include file for the Arduino SDK
Copyright (c) 2005-2013 Arduino Team. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef MAIN_ESP32_HAL_GPIO_H_
#define MAIN_ESP32_HAL_GPIO_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "esp32-hal.h"
#include "soc/soc_caps.h"
#include "pins_arduino.h"
#if (CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3)
#define NUM_OUPUT_PINS 46
#define PIN_DAC1 17
#define PIN_DAC2 18
#else
#define NUM_OUPUT_PINS 34
#define PIN_DAC1 25
#define PIN_DAC2 26
#endif
#define LOW 0x0
#define HIGH 0x1
//GPIO FUNCTIONS
#define INPUT 0x01
// Changed OUTPUT from 0x02 to behave the same as Arduino pinMode(pin,OUTPUT)
// where you can read the state of pin even when it is set as OUTPUT
#define OUTPUT 0x03
#define PULLUP 0x04
#define INPUT_PULLUP 0x05
#define PULLDOWN 0x08
#define INPUT_PULLDOWN 0x09
#define OPEN_DRAIN 0x10
#define OUTPUT_OPEN_DRAIN 0x13
#define ANALOG 0xC0
//Interrupt Modes
#define DISABLED 0x00
#define RISING 0x01
#define FALLING 0x02
#define CHANGE 0x03
#define ONLOW 0x04
#define ONHIGH 0x05
#define ONLOW_WE 0x0C
#define ONHIGH_WE 0x0D
#define digitalPinIsValid(pin) GPIO_IS_VALID_GPIO(pin)
#define digitalPinCanOutput(pin) GPIO_IS_VALID_OUTPUT_GPIO(pin)
#define digitalPinToRtcPin(pin) ((RTC_GPIO_IS_VALID_GPIO(pin))?rtc_io_number_get(pin):-1)
#define digitalPinToDacChannel(pin) (((pin) == DAC_CHANNEL_1_GPIO_NUM)?0:((pin) == DAC_CHANNEL_2_GPIO_NUM)?1:-1)
void pinMode(uint8_t pin, uint8_t mode);
void digitalWrite(uint8_t pin, uint8_t val);
int digitalRead(uint8_t pin);
void attachInterrupt(uint8_t pin, void (*)(void), int mode);
void attachInterruptArg(uint8_t pin, void (*)(void*), void * arg, int mode);
void detachInterrupt(uint8_t pin);
int8_t digitalPinToTouchChannel(uint8_t pin);
int8_t digitalPinToAnalogChannel(uint8_t pin);
int8_t analogChannelToDigitalPin(uint8_t channel);
#ifdef __cplusplus
}
#endif
#endif /* MAIN_ESP32_HAL_GPIO_H_ */

@ -1,841 +0,0 @@
// Copyright 2015-2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <inttypes.h>
#include <string.h>
#include <math.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "rom/gpio.h"
#include "soc/gpio_sig_map.h"
#include "hal/gpio_types.h"
#include "driver/gpio.h"
#include "esp_err.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "freertos/ringbuf.h"
#include "esp_intr_alloc.h"
#include "driver/periph_ctrl.h"
#include "soc/i2c_reg.h"
#include "soc/i2c_struct.h"
#include "hal/i2c_ll.h"
#include "esp32-hal-log.h"
#include "esp32-hal-i2c-slave.h"
#define I2C_SLAVE_USE_RX_QUEUE 0 // 1: Queue, 0: RingBuffer
#if SOC_I2C_NUM > 1
#define I2C_SCL_IDX(p) ((p==0)?I2CEXT0_SCL_OUT_IDX:((p==1)?I2CEXT1_SCL_OUT_IDX:0))
#define I2C_SDA_IDX(p) ((p==0)?I2CEXT0_SDA_OUT_IDX:((p==1)?I2CEXT1_SDA_OUT_IDX:0))
#else
#define I2C_SCL_IDX(p) I2CEXT0_SCL_OUT_IDX
#define I2C_SDA_IDX(p) I2CEXT0_SDA_OUT_IDX
#endif
#if CONFIG_IDF_TARGET_ESP32
#define I2C_TXFIFO_WM_INT_ENA I2C_TXFIFO_EMPTY_INT_ENA
#define I2C_RXFIFO_WM_INT_ENA I2C_RXFIFO_FULL_INT_ENA
#endif
enum {
I2C_SLAVE_EVT_RX, I2C_SLAVE_EVT_TX
};
typedef struct i2c_slave_struct_t {
i2c_dev_t * dev;
uint8_t num;
int8_t sda;
int8_t scl;
i2c_slave_request_cb_t request_callback;
i2c_slave_receive_cb_t receive_callback;
void * arg;
intr_handle_t intr_handle;
TaskHandle_t task_handle;
xQueueHandle event_queue;
#if I2C_SLAVE_USE_RX_QUEUE
xQueueHandle rx_queue;
#else
RingbufHandle_t rx_ring_buf;
#endif
xQueueHandle tx_queue;
uint32_t rx_data_count;
#if !CONFIG_DISABLE_HAL_LOCKS
xSemaphoreHandle lock;
#endif
} i2c_slave_struct_t;
typedef union {
struct {
uint32_t event : 2;
uint32_t stop : 1;
uint32_t param : 29;
};
uint32_t val;
} i2c_slave_queue_event_t;
static i2c_slave_struct_t _i2c_bus_array[SOC_I2C_NUM] = {
{ &I2C0, 0, -1, -1, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 0
#if !CONFIG_DISABLE_HAL_LOCKS
, NULL
#endif
},
#if SOC_I2C_NUM > 1
{ &I2C1, 1, -1, -1, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 0
#if !CONFIG_DISABLE_HAL_LOCKS
, NULL
#endif
}
#endif
};
#if CONFIG_DISABLE_HAL_LOCKS
#define I2C_SLAVE_MUTEX_LOCK()
#define I2C_SLAVE_MUTEX_UNLOCK()
#else
#define I2C_SLAVE_MUTEX_LOCK() if(i2c->lock){xSemaphoreTake(i2c->lock, portMAX_DELAY);}
#define I2C_SLAVE_MUTEX_UNLOCK() if(i2c->lock){xSemaphoreGive(i2c->lock);}
#endif
//-------------------------------------- HAL_LL (Missing Functions) ------------------------------------------------
typedef enum {
I2C_STRETCH_CAUSE_MASTER_READ,
I2C_STRETCH_CAUSE_TX_FIFO_EMPTY,
I2C_STRETCH_CAUSE_RX_FIFO_FULL,
I2C_STRETCH_CAUSE_MAX
} i2c_stretch_cause_t;
static inline i2c_stretch_cause_t i2c_ll_stretch_cause(i2c_dev_t *hw)
{
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3
return hw->sr.stretch_cause;
#elif CONFIG_IDF_TARGET_ESP32S2
return hw->status_reg.stretch_cause;
#else
return I2C_STRETCH_CAUSE_MAX;
#endif
}
static inline void i2c_ll_set_stretch(i2c_dev_t *hw, uint16_t time)
{
#ifndef CONFIG_IDF_TARGET_ESP32
typeof(hw->scl_stretch_conf) scl_stretch_conf;
scl_stretch_conf.val = 0;
scl_stretch_conf.slave_scl_stretch_en = (time > 0);
scl_stretch_conf.stretch_protect_num = time;
scl_stretch_conf.slave_scl_stretch_clr = 1;
hw->scl_stretch_conf.val = scl_stretch_conf.val;
if(time > 0){
//enable interrupt
hw->int_ena.val |= I2C_SLAVE_STRETCH_INT_ENA;
} else {
//disable interrupt
hw->int_ena.val &= (~I2C_SLAVE_STRETCH_INT_ENA);
}
#endif
}
static inline void i2c_ll_stretch_clr(i2c_dev_t *hw)
{
#ifndef CONFIG_IDF_TARGET_ESP32
hw->scl_stretch_conf.slave_scl_stretch_clr = 1;
#endif
}
static inline bool i2c_ll_slave_addressed(i2c_dev_t *hw)
{
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3
return hw->sr.slave_addressed;
#else
return hw->status_reg.slave_addressed;
#endif
}
static inline bool i2c_ll_slave_rw(i2c_dev_t *hw)//not exposed by hal_ll
{
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3
return hw->sr.slave_rw;
#else
return hw->status_reg.slave_rw;
#endif
}
//-------------------------------------- PRIVATE (Function Prototypes) ------------------------------------------------
static void i2c_slave_free_resources(i2c_slave_struct_t * i2c);
static void i2c_slave_delay_us(uint64_t us);
static void i2c_slave_gpio_mode(int8_t pin, gpio_mode_t mode);
static bool i2c_slave_check_line_state(int8_t sda, int8_t scl);
static bool i2c_slave_attach_gpio(i2c_slave_struct_t * i2c, int8_t sda, int8_t scl);
static bool i2c_slave_detach_gpio(i2c_slave_struct_t * i2c);
static bool i2c_slave_set_frequency(i2c_slave_struct_t * i2c, uint32_t clk_speed);
static bool i2c_slave_send_event(i2c_slave_struct_t * i2c, i2c_slave_queue_event_t* event);
static bool i2c_slave_handle_tx_fifo_empty(i2c_slave_struct_t * i2c);
static bool i2c_slave_handle_rx_fifo_full(i2c_slave_struct_t * i2c, uint32_t len);
static size_t i2c_slave_read_rx(i2c_slave_struct_t * i2c, uint8_t * data, size_t len);
static void i2c_slave_isr_handler(void* arg);
static void i2c_slave_task(void *pv_args);
//=====================================================================================================================
//-------------------------------------- Public Functions -------------------------------------------------------------
//=====================================================================================================================
esp_err_t i2cSlaveAttachCallbacks(uint8_t num, i2c_slave_request_cb_t request_callback, i2c_slave_receive_cb_t receive_callback, void * arg){
if(num >= SOC_I2C_NUM){
log_e("Invalid port num: %u", num);
return ESP_ERR_INVALID_ARG;
}
i2c_slave_struct_t * i2c = &_i2c_bus_array[num];
I2C_SLAVE_MUTEX_LOCK();
i2c->request_callback = request_callback;
i2c->receive_callback = receive_callback;
i2c->arg = arg;
I2C_SLAVE_MUTEX_UNLOCK();
return ESP_OK;
}
esp_err_t i2cSlaveInit(uint8_t num, int sda, int scl, uint16_t slaveID, uint32_t frequency, size_t rx_len, size_t tx_len) {
if(num >= SOC_I2C_NUM){
log_e("Invalid port num: %u", num);
return ESP_ERR_INVALID_ARG;
}
if (sda < 0 || scl < 0) {
log_e("invalid pins sda=%d, scl=%d", sda, scl);
return ESP_ERR_INVALID_ARG;
}
if(!frequency){
frequency = 100000;
} else if(frequency > 1000000){
frequency = 1000000;
}
log_i("Initialising I2C Slave: sda=%d scl=%d freq=%d, addr=0x%x", sda, scl, frequency, slaveID);
i2c_slave_struct_t * i2c = &_i2c_bus_array[num];
esp_err_t ret = ESP_OK;
#if !CONFIG_DISABLE_HAL_LOCKS
if(!i2c->lock){
i2c->lock = xSemaphoreCreateMutex();
if (i2c->lock == NULL) {
log_e("RX queue create failed");
return ESP_ERR_NO_MEM;
}
}
#endif
I2C_SLAVE_MUTEX_LOCK();
i2c_slave_free_resources(i2c);
#if I2C_SLAVE_USE_RX_QUEUE
i2c->rx_queue = xQueueCreate(rx_len, sizeof(uint8_t));
if (i2c->rx_queue == NULL) {
log_e("RX queue create failed");
ret = ESP_ERR_NO_MEM;
goto fail;
}
#else
i2c->rx_ring_buf = xRingbufferCreate(rx_len, RINGBUF_TYPE_BYTEBUF);
if (i2c->rx_ring_buf == NULL) {
log_e("RX RingBuf create failed");
ret = ESP_ERR_NO_MEM;
goto fail;
}
#endif
i2c->tx_queue = xQueueCreate(tx_len, sizeof(uint8_t));
if (i2c->tx_queue == NULL) {
log_e("TX queue create failed");
ret = ESP_ERR_NO_MEM;
goto fail;
}
i2c->event_queue = xQueueCreate(16, sizeof(i2c_slave_queue_event_t));
if (i2c->event_queue == NULL) {
log_e("Event queue create failed");
ret = ESP_ERR_NO_MEM;
goto fail;
}
xTaskCreate(i2c_slave_task, "i2c_slave_task", 4096, i2c, 20, &i2c->task_handle);
if(i2c->task_handle == NULL){
log_e("Event thread create failed");
ret = ESP_ERR_NO_MEM;
goto fail;
}
if (frequency == 0) {
frequency = 100000L;
}
frequency = (frequency * 5) / 4;
if (i2c->num == 0) {
periph_module_enable(PERIPH_I2C0_MODULE);
#if SOC_I2C_NUM > 1
} else {
periph_module_enable(PERIPH_I2C1_MODULE);
#endif
}
i2c_ll_slave_init(i2c->dev);
i2c_ll_set_fifo_mode(i2c->dev, true);
i2c_ll_set_slave_addr(i2c->dev, slaveID, false);
i2c_ll_set_tout(i2c->dev, I2C_LL_MAX_TIMEOUT);
i2c_slave_set_frequency(i2c, frequency);
if (!i2c_slave_check_line_state(sda, scl)) {
log_e("bad pin state");
ret = ESP_FAIL;
goto fail;
}
i2c_slave_attach_gpio(i2c, sda, scl);
if (i2c_ll_is_bus_busy(i2c->dev)) {
log_w("Bus busy, reinit");
ret = ESP_FAIL;
goto fail;
}
i2c_ll_disable_intr_mask(i2c->dev, I2C_LL_INTR_MASK);
i2c_ll_clr_intsts_mask(i2c->dev, I2C_LL_INTR_MASK);
i2c_ll_set_fifo_mode(i2c->dev, true);
if (!i2c->intr_handle) {
uint32_t flags = ESP_INTR_FLAG_LOWMED | ESP_INTR_FLAG_SHARED;
if(i2c->num == 0) {
ret = esp_intr_alloc(ETS_I2C_EXT0_INTR_SOURCE, flags, &i2c_slave_isr_handler, i2c, &i2c->intr_handle);
#if SOC_I2C_NUM > 1
} else {
ret = esp_intr_alloc(ETS_I2C_EXT1_INTR_SOURCE, flags, &i2c_slave_isr_handler, i2c, &i2c->intr_handle);
#endif
}
if (ret != ESP_OK) {
log_e("install interrupt handler Failed=%d", ret);
goto fail;
}
}
i2c_ll_txfifo_rst(i2c->dev);
i2c_ll_rxfifo_rst(i2c->dev);
i2c_ll_slave_enable_rx_it(i2c->dev);
i2c_ll_set_stretch(i2c->dev, 0x3FF);
i2c_ll_update(i2c->dev);
I2C_SLAVE_MUTEX_UNLOCK();
return ret;
fail:
i2c_slave_free_resources(i2c);
I2C_SLAVE_MUTEX_UNLOCK();
return ret;
}
esp_err_t i2cSlaveDeinit(uint8_t num){
if(num >= SOC_I2C_NUM){
log_e("Invalid port num: %u", num);
return ESP_ERR_INVALID_ARG;
}
i2c_slave_struct_t * i2c = &_i2c_bus_array[num];
#if !CONFIG_DISABLE_HAL_LOCKS
if(!i2c->lock){
log_e("Lock is not initialized! Did you call i2c_slave_init()?");
return ESP_ERR_NO_MEM;
}
#endif
I2C_SLAVE_MUTEX_LOCK();
i2c_slave_free_resources(i2c);
I2C_SLAVE_MUTEX_UNLOCK();
return ESP_OK;
}
size_t i2cSlaveWrite(uint8_t num, const uint8_t *buf, uint32_t len, uint32_t timeout_ms) {
if(num >= SOC_I2C_NUM){
log_e("Invalid port num: %u", num);
return 0;
}
size_t to_queue = 0, to_fifo = 0;
i2c_slave_struct_t * i2c = &_i2c_bus_array[num];
#if !CONFIG_DISABLE_HAL_LOCKS
if(!i2c->lock){
log_e("Lock is not initialized! Did you call i2c_slave_init()?");
return ESP_ERR_NO_MEM;
}
#endif
if(!i2c->tx_queue){
return 0;
}
I2C_SLAVE_MUTEX_LOCK();
#if CONFIG_IDF_TARGET_ESP32
i2c_ll_slave_disable_tx_it(i2c->dev);
if (i2c_ll_get_txfifo_len(i2c->dev) < SOC_I2C_FIFO_LEN) {
i2c_ll_txfifo_rst(i2c->dev);
}
#endif
to_fifo = i2c_ll_get_txfifo_len(i2c->dev);
if(len < to_fifo){
to_fifo = len;
}
i2c_ll_write_txfifo(i2c->dev, (uint8_t*)buf, to_fifo);
buf += to_fifo;
len -= to_fifo;
//reset tx_queue
xQueueReset(i2c->tx_queue);
//write the rest of the bytes to the queue
if(len){
to_queue = uxQueueSpacesAvailable(i2c->tx_queue);
if(len < to_queue){
to_queue = len;
}
for (size_t i = 0; i < to_queue; i++) {
if (xQueueSend(i2c->tx_queue, &buf[i], timeout_ms / portTICK_RATE_MS) != pdTRUE) {
xQueueReset(i2c->tx_queue);
to_queue = 0;
break;
}
}
//no need to enable TX_EMPTY if tx_queue is empty
if(to_queue){
i2c_ll_slave_enable_tx_it(i2c->dev);
}
}
I2C_SLAVE_MUTEX_UNLOCK();
return to_queue + to_fifo;
}
//=====================================================================================================================
//-------------------------------------- Private Functions ------------------------------------------------------------
//=====================================================================================================================
static void i2c_slave_free_resources(i2c_slave_struct_t * i2c){
i2c_slave_detach_gpio(i2c);
i2c_ll_set_slave_addr(i2c->dev, 0, false);
i2c_ll_disable_intr_mask(i2c->dev, I2C_LL_INTR_MASK);
i2c_ll_clr_intsts_mask(i2c->dev, I2C_LL_INTR_MASK);
if (i2c->intr_handle) {
esp_intr_free(i2c->intr_handle);
i2c->intr_handle = NULL;
}
if(i2c->task_handle){
vTaskDelete(i2c->task_handle);
i2c->task_handle = NULL;
}
#if I2C_SLAVE_USE_RX_QUEUE
if (i2c->rx_queue) {
vQueueDelete(i2c->rx_queue);
i2c->rx_queue = NULL;
}
#else
if (i2c->rx_ring_buf) {
vRingbufferDelete(i2c->rx_ring_buf);
i2c->rx_ring_buf = NULL;
}
#endif
if (i2c->tx_queue) {
vQueueDelete(i2c->tx_queue);
i2c->tx_queue = NULL;
}
if (i2c->event_queue) {
vQueueDelete(i2c->event_queue);
i2c->event_queue = NULL;
}
i2c->rx_data_count = 0;
}
static bool i2c_slave_set_frequency(i2c_slave_struct_t * i2c, uint32_t clk_speed)
{
if (i2c == NULL) {
log_e("no control buffer");
return false;
}
if(clk_speed > 1100000UL){
clk_speed = 1100000UL;
}
// Adjust Fifo thresholds based on frequency
uint32_t a = (clk_speed / 50000L) + 2;
log_d("Fifo thresholds: rx_fifo_full = %d, tx_fifo_empty = %d", SOC_I2C_FIFO_LEN - a, a);
i2c_clk_cal_t clk_cal;
#if SOC_I2C_SUPPORT_APB
i2c_ll_cal_bus_clk(APB_CLK_FREQ, clk_speed, &clk_cal);
i2c_ll_set_source_clk(i2c->dev, I2C_SCLK_APB); /*!< I2C source clock from APB, 80M*/
#elif SOC_I2C_SUPPORT_XTAL
i2c_ll_cal_bus_clk(XTAL_CLK_FREQ, clk_speed, &clk_cal);
i2c_ll_set_source_clk(i2c->dev, I2C_SCLK_XTAL); /*!< I2C source clock from XTAL, 40M */
#endif
i2c_ll_set_txfifo_empty_thr(i2c->dev, a);
i2c_ll_set_rxfifo_full_thr(i2c->dev, SOC_I2C_FIFO_LEN - a);
i2c_ll_set_bus_timing(i2c->dev, &clk_cal);
i2c_ll_set_filter(i2c->dev, 3);
return true;
}
static void i2c_slave_delay_us(uint64_t us)
{
uint64_t m = esp_timer_get_time();
if (us) {
uint64_t e = (m + us);
if (m > e) { //overflow
while ((uint64_t)esp_timer_get_time() > e);
}
while ((uint64_t)esp_timer_get_time() < e);
}
}
static void i2c_slave_gpio_mode(int8_t pin, gpio_mode_t mode)
{
gpio_config_t conf = {
.pin_bit_mask = 1LL << pin,
.mode = mode,
.pull_up_en = GPIO_PULLUP_ENABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE,
.intr_type = GPIO_INTR_DISABLE
};
gpio_config(&conf);
}
static bool i2c_slave_check_line_state(int8_t sda, int8_t scl)
{
if (sda < 0 || scl < 0) {
return false;//return false since there is nothing to do
}
// if the bus is not 'clear' try the cycling SCL until SDA goes High or 9 cycles
gpio_set_level(sda, 1);
gpio_set_level(scl, 1);
i2c_slave_gpio_mode(sda, GPIO_MODE_INPUT | GPIO_MODE_DEF_OD);
i2c_slave_gpio_mode(scl, GPIO_MODE_INPUT | GPIO_MODE_DEF_OD);
gpio_set_level(scl, 1);
if (!gpio_get_level(sda) || !gpio_get_level(scl)) { // bus in busy state
log_w("invalid state sda(%d)=%d, scl(%d)=%d", sda, gpio_get_level(sda), scl, gpio_get_level(scl));
for (uint8_t a=0; a<9; a++) {
i2c_slave_delay_us(5);
if (gpio_get_level(sda) && gpio_get_level(scl)) { // bus recovered
log_w("Recovered after %d Cycles",a);
gpio_set_level(sda,0); // start
i2c_slave_delay_us(5);
for (uint8_t a=0;a<9; a++) {
gpio_set_level(scl,1);
i2c_slave_delay_us(5);
gpio_set_level(scl,0);
i2c_slave_delay_us(5);
}
gpio_set_level(scl,1);
i2c_slave_delay_us(5);
gpio_set_level(sda,1); // stop
break;
}
gpio_set_level(scl, 0);
i2c_slave_delay_us(5);
gpio_set_level(scl, 1);
}
}
if (!gpio_get_level(sda) || !gpio_get_level(scl)) { // bus in busy state
log_e("Bus Invalid State, Can't init sda=%d, scl=%d",gpio_get_level(sda),gpio_get_level(scl));
return false; // bus is busy
}
return true;
}
static bool i2c_slave_attach_gpio(i2c_slave_struct_t * i2c, int8_t sda, int8_t scl)
{
if (i2c == NULL) {
log_e("no control block");
return false;
}
if ((sda < 0)||( scl < 0)) {
log_e("bad pins sda=%d, scl=%d",sda,scl);
return false;
}
i2c->scl = scl;
gpio_set_level(scl, 1);
i2c_slave_gpio_mode(scl, GPIO_MODE_INPUT_OUTPUT_OD);
gpio_matrix_out(scl, I2C_SCL_IDX(i2c->num), false, false);
gpio_matrix_in(scl, I2C_SCL_IDX(i2c->num), false);
i2c->sda = sda;
gpio_set_level(sda, 1);
i2c_slave_gpio_mode(sda, GPIO_MODE_INPUT_OUTPUT_OD);
gpio_matrix_out(sda, I2C_SDA_IDX(i2c->num), false, false);
gpio_matrix_in(sda, I2C_SDA_IDX(i2c->num), false);
return true;
}
static bool i2c_slave_detach_gpio(i2c_slave_struct_t * i2c)
{
if (i2c == NULL) {
log_e("no control Block");
return false;
}
if (i2c->scl >= 0) {
gpio_matrix_out(i2c->scl, 0x100, false, false);
gpio_matrix_in(0x30, I2C_SCL_IDX(i2c->num), false);
i2c_slave_gpio_mode(i2c->scl, GPIO_MODE_INPUT);
i2c->scl = -1; // un attached
}
if (i2c->sda >= 0) {
gpio_matrix_out(i2c->sda, 0x100, false, false);
gpio_matrix_in(0x30, I2C_SDA_IDX(i2c->num), false);
i2c_slave_gpio_mode(i2c->sda, GPIO_MODE_INPUT);
i2c->sda = -1; // un attached
}
return true;
}
static bool i2c_slave_send_event(i2c_slave_struct_t * i2c, i2c_slave_queue_event_t* event)
{
bool pxHigherPriorityTaskWoken = false;
if(i2c->event_queue) {
if(xQueueSendFromISR(i2c->event_queue, event, (BaseType_t * const)&pxHigherPriorityTaskWoken) != pdTRUE){
//log_e("event_queue_full");
}
}
return pxHigherPriorityTaskWoken;
}
static bool i2c_slave_handle_tx_fifo_empty(i2c_slave_struct_t * i2c)
{
bool pxHigherPriorityTaskWoken = false;
uint32_t d = 0, moveCnt = i2c_ll_get_txfifo_len(i2c->dev);
while (moveCnt > 0) { // read tx queue until Fifo is full or queue is empty
if(xQueueReceiveFromISR(i2c->tx_queue, &d, (BaseType_t * const)&pxHigherPriorityTaskWoken) == pdTRUE){
i2c_ll_write_txfifo(i2c->dev, (uint8_t*)&d, 1);
moveCnt--;
} else {
i2c_ll_slave_disable_tx_it(i2c->dev);
break;
}
}
return pxHigherPriorityTaskWoken;
}
static bool i2c_slave_handle_rx_fifo_full(i2c_slave_struct_t * i2c, uint32_t len)
{
#if I2C_SLAVE_USE_RX_QUEUE
uint32_t d = 0;
#else
uint8_t data[SOC_I2C_FIFO_LEN];
#endif
bool pxHigherPriorityTaskWoken = false;
#if I2C_SLAVE_USE_RX_QUEUE
while (len > 0) {
i2c_ll_read_rxfifo(i2c->dev, (uint8_t*)&d, 1);
if(xQueueSendFromISR(i2c->rx_queue, &d, (BaseType_t * const)&pxHigherPriorityTaskWoken) != pdTRUE){
log_e("rx_queue_full");
} else {
i2c->rx_data_count++;
}
if (--len == 0) {
len = i2c_ll_get_rxfifo_cnt(i2c->dev);
}
#else
if(len){
i2c_ll_read_rxfifo(i2c->dev, data, len);
if(xRingbufferSendFromISR(i2c->rx_ring_buf, (void*) data, len, (BaseType_t * const)&pxHigherPriorityTaskWoken) != pdTRUE){
log_e("rx_ring_buf_full");
} else {
i2c->rx_data_count += len;
}
#endif
}
return pxHigherPriorityTaskWoken;
}
static void i2c_slave_isr_handler(void* arg)
{
bool pxHigherPriorityTaskWoken = false;
i2c_slave_struct_t * i2c = (i2c_slave_struct_t *) arg; // recover data
uint32_t activeInt = i2c_ll_get_intsts_mask(i2c->dev);
i2c_ll_clr_intsts_mask(i2c->dev, activeInt);
uint8_t rx_fifo_len = i2c_ll_get_rxfifo_cnt(i2c->dev);
bool slave_rw = i2c_ll_slave_rw(i2c->dev);
if(activeInt & I2C_RXFIFO_WM_INT_ENA){ // RX FiFo Full
pxHigherPriorityTaskWoken |= i2c_slave_handle_rx_fifo_full(i2c, rx_fifo_len);
i2c_ll_slave_enable_rx_it(i2c->dev);//is this necessary?
}
if(activeInt & I2C_TRANS_COMPLETE_INT_ENA){ // STOP
if(rx_fifo_len){ //READ RX FIFO
pxHigherPriorityTaskWoken |= i2c_slave_handle_rx_fifo_full(i2c, rx_fifo_len);
}
if(i2c->rx_data_count){ //WRITE or RepeatedStart
//SEND RX Event
i2c_slave_queue_event_t event;
event.event = I2C_SLAVE_EVT_RX;
event.stop = !slave_rw;
event.param = i2c->rx_data_count;
pxHigherPriorityTaskWoken |= i2c_slave_send_event(i2c, &event);
//Zero RX count
i2c->rx_data_count = 0;
}
if(slave_rw){ // READ
#if CONFIG_IDF_TARGET_ESP32
if(i2c->dev->status_reg.scl_main_state_last == 6){
//SEND TX Event
i2c_slave_queue_event_t event;
event.event = I2C_SLAVE_EVT_TX;
pxHigherPriorityTaskWoken |= i2c_slave_send_event(i2c, &event);
}
#else
//reset TX data
i2c_ll_txfifo_rst(i2c->dev);
uint8_t d;
while (xQueueReceiveFromISR(i2c->tx_queue, &d, (BaseType_t * const)&pxHigherPriorityTaskWoken) == pdTRUE) ;//flush partial write
#endif
}
}
#ifndef CONFIG_IDF_TARGET_ESP32
if(activeInt & I2C_SLAVE_STRETCH_INT_ENA){ // STRETCH
i2c_stretch_cause_t cause = i2c_ll_stretch_cause(i2c->dev);
if(cause == I2C_STRETCH_CAUSE_MASTER_READ){
//on C3 RX data dissapears with repeated start, so we need to get it here
if(rx_fifo_len){
pxHigherPriorityTaskWoken |= i2c_slave_handle_rx_fifo_full(i2c, rx_fifo_len);
}
//SEND TX Event
i2c_slave_queue_event_t event;
event.event = I2C_SLAVE_EVT_TX;
pxHigherPriorityTaskWoken |= i2c_slave_send_event(i2c, &event);
//will clear after execution
} else if(cause == I2C_STRETCH_CAUSE_TX_FIFO_EMPTY){
pxHigherPriorityTaskWoken |= i2c_slave_handle_tx_fifo_empty(i2c);
i2c_ll_stretch_clr(i2c->dev);
} else if(cause == I2C_STRETCH_CAUSE_RX_FIFO_FULL){
pxHigherPriorityTaskWoken |= i2c_slave_handle_rx_fifo_full(i2c, rx_fifo_len);
i2c_ll_stretch_clr(i2c->dev);
}
}
#endif
if(activeInt & I2C_TXFIFO_WM_INT_ENA){ // TX FiFo Empty
pxHigherPriorityTaskWoken |= i2c_slave_handle_tx_fifo_empty(i2c);
}
if(pxHigherPriorityTaskWoken){
portYIELD_FROM_ISR();
}
}
static size_t i2c_slave_read_rx(i2c_slave_struct_t * i2c, uint8_t * data, size_t len){
if(!len){
return 0;
}
#if I2C_SLAVE_USE_RX_QUEUE
uint8_t d = 0;
BaseType_t res = pdTRUE;
for(size_t i=0; i<len; i++) {
if(data){
res = xQueueReceive(i2c->rx_queue, &data[i], 0);
} else {
res = xQueueReceive(i2c->rx_queue, &d, 0);
}
if (res != pdTRUE) {
log_e("Read Queue(%u) Failed", i);
len = i;
break;
}
}
return (data)?len:0;
#else
size_t dlen = 0,
to_read = len,
so_far = 0,
available = 0;
uint8_t * rx_data = NULL;
vRingbufferGetInfo(i2c->rx_ring_buf, NULL, NULL, NULL, NULL, &available);
if(available < to_read){
log_e("Less available than requested. %u < %u", available, len);
to_read = available;
}
while(to_read){
dlen = 0;
rx_data = (uint8_t *)xRingbufferReceiveUpTo(i2c->rx_ring_buf, &dlen, 0, to_read);
if(!rx_data){
log_e("Receive %u Failed", to_read);
return so_far;
}
if(data){
memcpy(data+so_far, rx_data, dlen);
}
vRingbufferReturnItem(i2c->rx_ring_buf, rx_data);
so_far+=dlen;
to_read-=dlen;
}
return (data)?so_far:0;
#endif
}
static void i2c_slave_task(void *pv_args)
{
i2c_slave_struct_t * i2c = (i2c_slave_struct_t *)pv_args;
i2c_slave_queue_event_t event;
size_t len = 0;
bool stop = false;
uint8_t * data = NULL;
for(;;){
if(xQueueReceive(i2c->event_queue, &event, portMAX_DELAY) == pdTRUE){
// Write
if(event.event == I2C_SLAVE_EVT_RX){
len = event.param;
stop = event.stop;
data = (len > 0)?(uint8_t*)malloc(len):NULL;
if(len && data == NULL){
log_e("Malloc (%u) Failed", len);
}
len = i2c_slave_read_rx(i2c, data, len);
if(i2c->receive_callback){
i2c->receive_callback(i2c->num, data, len, stop, i2c->arg);
}
free(data);
// Read
} else if(event.event == I2C_SLAVE_EVT_TX){
if(i2c->request_callback){
i2c->request_callback(i2c->num, i2c->arg);
}
i2c_ll_stretch_clr(i2c->dev);
}
}
}
vTaskDelete(NULL);
}

@ -1,35 +0,0 @@
// Copyright 2015-2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include "stdint.h"
#include "stddef.h"
#include "esp_err.h"
typedef void (*i2c_slave_request_cb_t) (uint8_t num, void * arg);
typedef void (*i2c_slave_receive_cb_t) (uint8_t num, uint8_t * data, size_t len, bool stop, void * arg);
esp_err_t i2cSlaveAttachCallbacks(uint8_t num, i2c_slave_request_cb_t request_callback, i2c_slave_receive_cb_t receive_callback, void * arg);
esp_err_t i2cSlaveInit(uint8_t num, int sda, int scl, uint16_t slaveID, uint32_t frequency, size_t rx_len, size_t tx_len);
esp_err_t i2cSlaveDeinit(uint8_t num);
size_t i2cSlaveWrite(uint8_t num, const uint8_t *buf, uint32_t len, uint32_t timeout_ms);
#ifdef __cplusplus
}
#endif

@ -1,343 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal-i2c.h"
#include "esp32-hal.h"
#if !CONFIG_DISABLE_HAL_LOCKS
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#endif
#include "esp_attr.h"
#include "esp_system.h"
#include "soc/soc_caps.h"
#include "soc/i2c_periph.h"
#include "hal/i2c_hal.h"
#include "hal/i2c_ll.h"
#include "driver/i2c.h"
typedef volatile struct {
bool initialized;
uint32_t frequency;
#if !CONFIG_DISABLE_HAL_LOCKS
SemaphoreHandle_t lock;
#endif
} i2c_bus_t;
static i2c_bus_t bus[SOC_I2C_NUM];
bool i2cIsInit(uint8_t i2c_num){
if(i2c_num >= SOC_I2C_NUM){
return false;
}
return bus[i2c_num].initialized;
}
esp_err_t i2cInit(uint8_t i2c_num, int8_t sda, int8_t scl, uint32_t frequency){
if(i2c_num >= SOC_I2C_NUM){
return ESP_ERR_INVALID_ARG;
}
#if !CONFIG_DISABLE_HAL_LOCKS
if(bus[i2c_num].lock == NULL){
bus[i2c_num].lock = xSemaphoreCreateMutex();
if(bus[i2c_num].lock == NULL){
log_e("xSemaphoreCreateMutex failed");
return ESP_ERR_NO_MEM;
}
}
//acquire lock
if(xSemaphoreTake(bus[i2c_num].lock, portMAX_DELAY) != pdTRUE){
log_e("could not acquire lock");
return ESP_FAIL;
}
#endif
if(bus[i2c_num].initialized){
log_e("bus is already initialized");
return ESP_FAIL;
}
if(!frequency){
frequency = 100000UL;
} else if(frequency > 1000000UL){
frequency = 1000000UL;
}
log_i("Initialising I2C Master: sda=%d scl=%d freq=%d", sda, scl, frequency);
i2c_config_t conf = { };
conf.mode = I2C_MODE_MASTER;
conf.scl_io_num = (gpio_num_t)scl;
conf.sda_io_num = (gpio_num_t)sda;
conf.scl_pullup_en = GPIO_PULLUP_ENABLE;
conf.sda_pullup_en = GPIO_PULLUP_ENABLE;
conf.master.clk_speed = frequency;
conf.clk_flags = I2C_SCLK_SRC_FLAG_FOR_NOMAL; //Any one clock source that is available for the specified frequency may be choosen
esp_err_t ret = i2c_param_config((i2c_port_t)i2c_num, &conf);
if (ret != ESP_OK) {
log_e("i2c_param_config failed");
} else {
ret = i2c_driver_install((i2c_port_t)i2c_num, conf.mode, 0, 0, 0);
if (ret != ESP_OK) {
log_e("i2c_driver_install failed");
} else {
bus[i2c_num].initialized = true;
bus[i2c_num].frequency = frequency;
//Clock Stretching Timeout: 20b:esp32, 5b:esp32-c3, 24b:esp32-s2
i2c_set_timeout((i2c_port_t)i2c_num, I2C_LL_MAX_TIMEOUT);
}
}
#if !CONFIG_DISABLE_HAL_LOCKS
//release lock
xSemaphoreGive(bus[i2c_num].lock);
#endif
return ret;
}
esp_err_t i2cDeinit(uint8_t i2c_num){
esp_err_t err = ESP_FAIL;
if(i2c_num >= SOC_I2C_NUM){
return ESP_ERR_INVALID_ARG;
}
#if !CONFIG_DISABLE_HAL_LOCKS
//acquire lock
if(bus[i2c_num].lock == NULL || xSemaphoreTake(bus[i2c_num].lock, portMAX_DELAY) != pdTRUE){
log_e("could not acquire lock");
return err;
}
#endif
if(!bus[i2c_num].initialized){
log_e("bus is not initialized");
} else {
err = i2c_driver_delete((i2c_port_t)i2c_num);
if(err == ESP_OK){
bus[i2c_num].initialized = false;
}
}
#if !CONFIG_DISABLE_HAL_LOCKS
//release lock
xSemaphoreGive(bus[i2c_num].lock);
#endif
return err;
}
esp_err_t i2cWrite(uint8_t i2c_num, uint16_t address, const uint8_t* buff, size_t size, uint32_t timeOutMillis){
esp_err_t ret = ESP_FAIL;
i2c_cmd_handle_t cmd = NULL;
if(i2c_num >= SOC_I2C_NUM){
return ESP_ERR_INVALID_ARG;
}
#if !CONFIG_DISABLE_HAL_LOCKS
//acquire lock
if(bus[i2c_num].lock == NULL || xSemaphoreTake(bus[i2c_num].lock, portMAX_DELAY) != pdTRUE){
log_e("could not acquire lock");
return ret;
}
#endif
if(!bus[i2c_num].initialized){
log_e("bus is not initialized");
goto end;
}
//short implementation does not support zero size writes (example when scanning) PR in IDF?
//ret = i2c_master_write_to_device((i2c_port_t)i2c_num, address, buff, size, timeOutMillis / portTICK_RATE_MS);
ret = ESP_OK;
uint8_t cmd_buff[I2C_LINK_RECOMMENDED_SIZE(1)] = { 0 };
cmd = i2c_cmd_link_create_static(cmd_buff, I2C_LINK_RECOMMENDED_SIZE(1));
ret = i2c_master_start(cmd);
if (ret != ESP_OK) {
goto end;
}
ret = i2c_master_write_byte(cmd, (address << 1) | I2C_MASTER_WRITE, true);
if (ret != ESP_OK) {
goto end;
}
if(size){
ret = i2c_master_write(cmd, buff, size, true);
if (ret != ESP_OK) {
goto end;
}
}
ret = i2c_master_stop(cmd);
if (ret != ESP_OK) {
goto end;
}
ret = i2c_master_cmd_begin((i2c_port_t)i2c_num, cmd, timeOutMillis / portTICK_RATE_MS);
end:
if(cmd != NULL){
i2c_cmd_link_delete_static(cmd);
}
#if !CONFIG_DISABLE_HAL_LOCKS
//release lock
xSemaphoreGive(bus[i2c_num].lock);
#endif
return ret;
}
esp_err_t i2cRead(uint8_t i2c_num, uint16_t address, uint8_t* buff, size_t size, uint32_t timeOutMillis, size_t *readCount){
esp_err_t ret = ESP_FAIL;
if(i2c_num >= SOC_I2C_NUM){
return ESP_ERR_INVALID_ARG;
}
#if !CONFIG_DISABLE_HAL_LOCKS
//acquire lock
if(bus[i2c_num].lock == NULL || xSemaphoreTake(bus[i2c_num].lock, portMAX_DELAY) != pdTRUE){
log_e("could not acquire lock");
return ret;
}
#endif
if(!bus[i2c_num].initialized){
log_e("bus is not initialized");
} else {
ret = i2c_master_read_from_device((i2c_port_t)i2c_num, address, buff, size, timeOutMillis / portTICK_RATE_MS);
if(ret == ESP_OK){
*readCount = size;
} else {
*readCount = 0;
}
}
#if !CONFIG_DISABLE_HAL_LOCKS
//release lock
xSemaphoreGive(bus[i2c_num].lock);
#endif
return ret;
}
esp_err_t i2cWriteReadNonStop(uint8_t i2c_num, uint16_t address, const uint8_t* wbuff, size_t wsize, uint8_t* rbuff, size_t rsize, uint32_t timeOutMillis, size_t *readCount){
esp_err_t ret = ESP_FAIL;
if(i2c_num >= SOC_I2C_NUM){
return ESP_ERR_INVALID_ARG;
}
#if !CONFIG_DISABLE_HAL_LOCKS
//acquire lock
if(bus[i2c_num].lock == NULL || xSemaphoreTake(bus[i2c_num].lock, portMAX_DELAY) != pdTRUE){
log_e("could not acquire lock");
return ret;
}
#endif
if(!bus[i2c_num].initialized){
log_e("bus is not initialized");
} else {
ret = i2c_master_write_read_device((i2c_port_t)i2c_num, address, wbuff, wsize, rbuff, rsize, timeOutMillis / portTICK_RATE_MS);
if(ret == ESP_OK){
*readCount = rsize;
} else {
*readCount = 0;
}
}
#if !CONFIG_DISABLE_HAL_LOCKS
//release lock
xSemaphoreGive(bus[i2c_num].lock);
#endif
return ret;
}
esp_err_t i2cSetClock(uint8_t i2c_num, uint32_t frequency){
esp_err_t ret = ESP_FAIL;
if(i2c_num >= SOC_I2C_NUM){
return ESP_ERR_INVALID_ARG;
}
#if !CONFIG_DISABLE_HAL_LOCKS
//acquire lock
if(bus[i2c_num].lock == NULL || xSemaphoreTake(bus[i2c_num].lock, portMAX_DELAY) != pdTRUE){
log_e("could not acquire lock");
return ret;
}
#endif
if(!bus[i2c_num].initialized){
log_e("bus is not initialized");
goto end;
}
if(bus[i2c_num].frequency == frequency){
ret = ESP_OK;
goto end;
}
if(!frequency){
frequency = 100000UL;
} else if(frequency > 1000000UL){
frequency = 1000000UL;
}
// Freq limitation when using different clock sources
#define I2C_CLK_LIMIT_REF_TICK (1 * 1000 * 1000 / 20) /*!< Limited by REF_TICK, no more than REF_TICK/20*/
#define I2C_CLK_LIMIT_APB (80 * 1000 * 1000 / 20) /*!< Limited by APB, no more than APB/20*/
#define I2C_CLK_LIMIT_RTC (20 * 1000 * 1000 / 20) /*!< Limited by RTC, no more than RTC/20*/
#define I2C_CLK_LIMIT_XTAL (40 * 1000 * 1000 / 20) /*!< Limited by RTC, no more than XTAL/20*/
typedef struct {
uint8_t character; /*!< I2C source clock characteristic */
uint32_t clk_freq; /*!< I2C source clock frequency */
} i2c_clk_alloc_t;
// i2c clock characteristic, The order is the same as i2c_sclk_t.
static i2c_clk_alloc_t i2c_clk_alloc[I2C_SCLK_MAX] = {
{0, 0},
#if SOC_I2C_SUPPORT_APB
{0, I2C_CLK_LIMIT_APB}, /*!< I2C APB clock characteristic*/
#endif
#if SOC_I2C_SUPPORT_XTAL
{0, I2C_CLK_LIMIT_XTAL}, /*!< I2C XTAL characteristic*/
#endif
#if SOC_I2C_SUPPORT_RTC
{I2C_SCLK_SRC_FLAG_LIGHT_SLEEP | I2C_SCLK_SRC_FLAG_AWARE_DFS, I2C_CLK_LIMIT_RTC}, /*!< I2C 20M RTC characteristic*/
#endif
#if SOC_I2C_SUPPORT_REF_TICK
{I2C_SCLK_SRC_FLAG_AWARE_DFS, I2C_CLK_LIMIT_REF_TICK}, /*!< I2C REF_TICK characteristic*/
#endif
};
i2c_sclk_t src_clk = I2C_SCLK_DEFAULT;
ret = ESP_OK;
for (i2c_sclk_t clk = I2C_SCLK_DEFAULT + 1; clk < I2C_SCLK_MAX; clk++) {
#if CONFIG_IDF_TARGET_ESP32S3
if (clk == I2C_SCLK_RTC) { // RTC clock for s3 is unaccessable now.
continue;
}
#endif
if (frequency <= i2c_clk_alloc[clk].clk_freq) {
src_clk = clk;
break;
}
}
if(src_clk == I2C_SCLK_MAX){
log_e("clock source could not be selected");
ret = ESP_FAIL;
} else {
i2c_hal_context_t hal;
hal.dev = I2C_LL_GET_HW(i2c_num);
i2c_hal_set_bus_timing(&(hal), frequency, src_clk);
bus[i2c_num].frequency = frequency;
//Clock Stretching Timeout: 20b:esp32, 5b:esp32-c3, 24b:esp32-s2
i2c_set_timeout((i2c_port_t)i2c_num, I2C_LL_MAX_TIMEOUT);
}
end:
#if !CONFIG_DISABLE_HAL_LOCKS
//release lock
xSemaphoreGive(bus[i2c_num].lock);
#endif
return ret;
}
esp_err_t i2cGetClock(uint8_t i2c_num, uint32_t * frequency){
if(i2c_num >= SOC_I2C_NUM){
return ESP_ERR_INVALID_ARG;
}
if(!bus[i2c_num].initialized){
log_e("bus is not initialized");
return ESP_FAIL;
}
*frequency = bus[i2c_num].frequency;
return ESP_OK;
}

@ -1,41 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// modified Nov 2017 by Chuck Todd <StickBreaker> to support Interrupt Driven I/O
// modified Nov 2021 by Hristo Gochkov <Me-No-Dev> to support ESP-IDF API
#ifndef _ESP32_HAL_I2C_H_
#define _ESP32_HAL_I2C_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include <esp_err.h>
esp_err_t i2cInit(uint8_t i2c_num, int8_t sda, int8_t scl, uint32_t clk_speed);
esp_err_t i2cDeinit(uint8_t i2c_num);
esp_err_t i2cSetClock(uint8_t i2c_num, uint32_t frequency);
esp_err_t i2cGetClock(uint8_t i2c_num, uint32_t * frequency);
esp_err_t i2cWrite(uint8_t i2c_num, uint16_t address, const uint8_t* buff, size_t size, uint32_t timeOutMillis);
esp_err_t i2cRead(uint8_t i2c_num, uint16_t address, uint8_t* buff, size_t size, uint32_t timeOutMillis, size_t *readCount);
esp_err_t i2cWriteReadNonStop(uint8_t i2c_num, uint16_t address, const uint8_t* wbuff, size_t wsize, uint8_t* rbuff, size_t rsize, uint32_t timeOutMillis, size_t *readCount);
bool i2cIsInit(uint8_t i2c_num);
#ifdef __cplusplus
}
#endif
#endif /* _ESP32_HAL_I2C_H_ */

@ -1,272 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal.h"
#include "soc/soc_caps.h"
#include "driver/ledc.h"
#ifdef SOC_LEDC_SUPPORT_HS_MODE
#define LEDC_CHANNELS (SOC_LEDC_CHANNEL_NUM<<1)
#else
#define LEDC_CHANNELS (SOC_LEDC_CHANNEL_NUM)
#endif
//Use XTAL clock if possible to avoid timer frequency error when setting APB clock < 80 Mhz
//Need to be fixed in ESP-IDF
#ifdef SOC_LEDC_SUPPORT_XTAL_CLOCK
#define LEDC_DEFAULT_CLK LEDC_USE_XTAL_CLK
#else
#define LEDC_DEFAULT_CLK LEDC_AUTO_CLK
#endif
#define LEDC_MAX_BIT_WIDTH SOC_LEDC_TIMER_BIT_WIDE_NUM
/*
* LEDC Chan to Group/Channel/Timer Mapping
** ledc: 0 => Group: 0, Channel: 0, Timer: 0
** ledc: 1 => Group: 0, Channel: 1, Timer: 0
** ledc: 2 => Group: 0, Channel: 2, Timer: 1
** ledc: 3 => Group: 0, Channel: 3, Timer: 1
** ledc: 4 => Group: 0, Channel: 4, Timer: 2
** ledc: 5 => Group: 0, Channel: 5, Timer: 2
** ledc: 6 => Group: 0, Channel: 6, Timer: 3
** ledc: 7 => Group: 0, Channel: 7, Timer: 3
** ledc: 8 => Group: 1, Channel: 0, Timer: 0
** ledc: 9 => Group: 1, Channel: 1, Timer: 0
** ledc: 10 => Group: 1, Channel: 2, Timer: 1
** ledc: 11 => Group: 1, Channel: 3, Timer: 1
** ledc: 12 => Group: 1, Channel: 4, Timer: 2
** ledc: 13 => Group: 1, Channel: 5, Timer: 2
** ledc: 14 => Group: 1, Channel: 6, Timer: 3
** ledc: 15 => Group: 1, Channel: 7, Timer: 3
*/
uint8_t channels_resolution[LEDC_CHANNELS] = {0};
uint32_t ledcSetup(uint8_t chan, uint32_t freq, uint8_t bit_num)
{
if(chan >= LEDC_CHANNELS || bit_num > LEDC_MAX_BIT_WIDTH){
log_e("No more LEDC channels available! (maximum %u) or bit width too big (maximum %u)", LEDC_CHANNELS, LEDC_MAX_BIT_WIDTH);
return 0;
}
uint8_t group=(chan/8), timer=((chan/2)%4);
ledc_timer_config_t ledc_timer = {
.speed_mode = group,
.timer_num = timer,
.duty_resolution = bit_num,
.freq_hz = freq,
.clk_cfg = LEDC_DEFAULT_CLK
};
if(ledc_timer_config(&ledc_timer) != ESP_OK)
{
log_e("ledc setup failed!");
return 0;
}
channels_resolution[chan] = bit_num;
return ledc_get_freq(group,timer);
}
void ledcWrite(uint8_t chan, uint32_t duty)
{
if(chan >= LEDC_CHANNELS){
return;
}
uint8_t group=(chan/8), channel=(chan%8);
//Fixing if all bits in resolution is set = LEDC FULL ON
uint32_t max_duty = (1 << channels_resolution[chan]) - 1;
if((duty == max_duty) && (max_duty != 1)){
duty = max_duty + 1;
}
ledc_set_duty(group, channel, duty);
ledc_update_duty(group, channel);
}
uint32_t ledcRead(uint8_t chan)
{
if(chan >= LEDC_CHANNELS){
return 0;
}
uint8_t group=(chan/8), channel=(chan%8);
return ledc_get_duty(group,channel);
}
uint32_t ledcReadFreq(uint8_t chan)
{
if(!ledcRead(chan)){
return 0;
}
uint8_t group=(chan/8), timer=((chan/2)%4);
return ledc_get_freq(group,timer);
}
uint32_t ledcWriteTone(uint8_t chan, uint32_t freq)
{
if(chan >= LEDC_CHANNELS){
return 0;
}
if(!freq){
ledcWrite(chan, 0);
return 0;
}
uint8_t group=(chan/8), timer=((chan/2)%4);
ledc_timer_config_t ledc_timer = {
.speed_mode = group,
.timer_num = timer,
.duty_resolution = 10,
.freq_hz = freq,
.clk_cfg = LEDC_DEFAULT_CLK
};
if(ledc_timer_config(&ledc_timer) != ESP_OK)
{
log_e("ledcSetup failed!");
return 0;
}
channels_resolution[chan] = 10;
uint32_t res_freq = ledc_get_freq(group,timer);
ledcWrite(chan, 0x1FF);
return res_freq;
}
uint32_t ledcWriteNote(uint8_t chan, note_t note, uint8_t octave){
const uint16_t noteFrequencyBase[12] = {
// C C# D Eb E F F# G G# A Bb B
4186, 4435, 4699, 4978, 5274, 5588, 5920, 6272, 6645, 7040, 7459, 7902
};
if(octave > 8 || note >= NOTE_MAX){
return 0;
}
uint32_t noteFreq = (uint32_t)noteFrequencyBase[note] / (uint32_t)(1 << (8-octave));
return ledcWriteTone(chan, noteFreq);
}
void ledcAttachPin(uint8_t pin, uint8_t chan)
{
if(chan >= LEDC_CHANNELS){
return;
}
uint8_t group=(chan/8), channel=(chan%8), timer=((chan/2)%4);
uint32_t duty = ledc_get_duty(group,channel);
ledc_channel_config_t ledc_channel = {
.speed_mode = group,
.channel = channel,
.timer_sel = timer,
.intr_type = LEDC_INTR_DISABLE,
.gpio_num = pin,
.duty = duty,
.hpoint = 0
};
ledc_channel_config(&ledc_channel);
}
void ledcDetachPin(uint8_t pin)
{
pinMatrixOutDetach(pin, false, false);
}
uint32_t ledcChangeFrequency(uint8_t chan, uint32_t freq, uint8_t bit_num)
{
if(chan >= LEDC_CHANNELS || bit_num > LEDC_MAX_BIT_WIDTH){
log_e("LEDC channel not available! (maximum %u) or bit width too big (maximum %u)", LEDC_CHANNELS, LEDC_MAX_BIT_WIDTH);
return 0;
}
uint8_t group=(chan/8), timer=((chan/2)%4);
ledc_timer_config_t ledc_timer = {
.speed_mode = group,
.timer_num = timer,
.duty_resolution = bit_num,
.freq_hz = freq,
.clk_cfg = LEDC_DEFAULT_CLK
};
if(ledc_timer_config(&ledc_timer) != ESP_OK)
{
log_e("ledcChangeFrequency failed!");
return 0;
}
channels_resolution[chan] = bit_num;
return ledc_get_freq(group,timer);
}
static int8_t pin_to_channel[SOC_GPIO_PIN_COUNT] = { 0 };
static int cnt_channel = LEDC_CHANNELS;
static uint8_t analog_resolution = 8;
static int analog_frequency = 1000;
void analogWrite(uint8_t pin, int value) {
// Use ledc hardware for internal pins
if (pin < SOC_GPIO_PIN_COUNT) {
int8_t channel = -1;
if (pin_to_channel[pin] == 0) {
if (!cnt_channel) {
log_e("No more analogWrite channels available! You can have maximum %u", LEDC_CHANNELS);
return;
}
cnt_channel--;
channel = cnt_channel;
} else {
channel = analogGetChannel(pin);
}
log_v("GPIO %d - Using Channel %d, Value = %d", pin, channel, value);
if(ledcSetup(channel, analog_frequency, analog_resolution) == 0){
log_e("analogWrite setup failed (freq = %u, resolution = %u). Try setting different resolution or frequency");
return;
}
ledcAttachPin(pin, channel);
pin_to_channel[pin] = channel + 1;
ledcWrite(channel, value);
}
}
int8_t analogGetChannel(uint8_t pin) {
return pin_to_channel[pin] - 1;
}
void analogWriteFrequency(uint32_t freq) {
if (cnt_channel != LEDC_CHANNELS) {
for (int channel = LEDC_CHANNELS - 1; channel >= cnt_channel; channel--) {
if (ledcChangeFrequency(channel, freq, analog_resolution) == 0){
log_e("analogWrite frequency cant be set due to selected resolution! Try to adjust resolution first");
return;
}
}
}
analog_frequency = freq;
}
void analogWriteResolution(uint8_t bits) {
if(bits > LEDC_MAX_BIT_WIDTH) {
log_w("analogWrite resolution width too big! Setting to maximum %u bits)", LEDC_MAX_BIT_WIDTH);
bits = LEDC_MAX_BIT_WIDTH;
}
if (cnt_channel != LEDC_CHANNELS) {
for (int channel = LEDC_CHANNELS - 1; channel >= cnt_channel; channel--) {
if (ledcChangeFrequency(channel, analog_frequency, bits) == 0){
log_e("analogWrite resolution cant be set due to selected frequency! Try to adjust frequency first");
return;
}
}
}
analog_resolution = bits;
}

@ -1,45 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _ESP32_HAL_LEDC_H_
#define _ESP32_HAL_LEDC_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
typedef enum {
NOTE_C, NOTE_Cs, NOTE_D, NOTE_Eb, NOTE_E, NOTE_F, NOTE_Fs, NOTE_G, NOTE_Gs, NOTE_A, NOTE_Bb, NOTE_B, NOTE_MAX
} note_t;
//channel 0-15 resolution 1-16bits freq limits depend on resolution
uint32_t ledcSetup(uint8_t channel, uint32_t freq, uint8_t resolution_bits);
void ledcWrite(uint8_t channel, uint32_t duty);
uint32_t ledcWriteTone(uint8_t channel, uint32_t freq);
uint32_t ledcWriteNote(uint8_t channel, note_t note, uint8_t octave);
uint32_t ledcRead(uint8_t channel);
uint32_t ledcReadFreq(uint8_t channel);
void ledcAttachPin(uint8_t pin, uint8_t channel);
void ledcDetachPin(uint8_t pin);
uint32_t ledcChangeFrequency(uint8_t channel, uint32_t freq, uint8_t resolution_bits);
#ifdef __cplusplus
}
#endif
#endif /* _ESP32_HAL_LEDC_H_ */

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save