import pandas as pd import numpy as np import wordcloud from matplotlib.image import imread import jieba import jieba.analyse as analyse import re # 定义蓝色调色板 def blue_color_func(word, font_size, position, orientation, random_state=None, **kwargs): return "hsl(210, 100%%, %d%%)" % np.random.randint(50, 90) # 归一化“哈哈哈” def normalize_hahaha(text): return re.sub(r'哈{3,}', '哈哈哈', text) # 将数据导入 dm = pd.read_excel('All_Danmu.xlsx', sheet_name='Sheet1') # 扩展停用词列表 my_stopwords = set(['我', '你', '他', '这', '个', '是', '的', '了', '啊', '吗', '吧', '就', '都', '不是', '也', '哈哈哈', '吧', '呀', '哦', '呢', '哇', '么', '嘛', '呵呵', '呵', '嘿嘿', '哎呀', '哎', '哼', '呃']) # 词云图生成 def wordcloud_generation(dm): dm_list = dm['danmu'].dropna().astype(str).tolist() # 归一化处理 dm_list = [normalize_hahaha(text) for text in dm_list] dm_string = ' '.join(dm_list) # 弹幕字符串 # 使用TF-IDF提取关键词 keywords = analyse.extract_tags(dm_string, topK=100, withWeight=False, allowPOS=()) # 去掉停用词后的关键词 keywords = [word for word in keywords if word not in my_stopwords] # 将关键词拼接为一个字符串 dmreal_string = ' '.join(keywords) img = imread("OIP.jpg") # 词云生成 wc = wordcloud.WordCloud( stopwords=my_stopwords, width=1920, height=1200, background_color='white', font_path='msyhl.ttc', mask=img, max_words=100, color_func=blue_color_func, ).generate(dmreal_string) wc.to_file('alldanmu_dwordcloud.png') # 调用词云生成 wordcloud_generation(dm)