You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
216 lines
7.7 KiB
216 lines
7.7 KiB
5 months ago
|
import argparse
|
||
|
import logging
|
||
|
import os
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
from PIL import Image
|
||
|
from torchvision import transforms
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
from utils.data_loading import BasicDataset
|
||
|
from unet import UNet, SEUNet, UResnet34, UResnet50, UResnet101, UResnet152
|
||
|
from utils.utils import plot_img_and_mask
|
||
|
|
||
|
|
||
|
# os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
|
||
|
|
||
|
def predict_img(net,
|
||
|
full_img,
|
||
|
device,
|
||
|
scale_factor=1,
|
||
|
out_threshold=0.5):
|
||
|
net.eval()
|
||
|
img = torch.from_numpy(BasicDataset.preprocess(None, full_img, scale_factor, is_mask=False))
|
||
|
img = img.unsqueeze(0)
|
||
|
img = img.to(device=device, dtype=torch.float32)
|
||
|
|
||
|
with torch.no_grad():
|
||
|
output = net(img).cpu()
|
||
|
output = F.interpolate(output, (full_img.size[1], full_img.size[0]), mode='bilinear')
|
||
|
if net.n_classes > 1:
|
||
|
output = F.softmax(output, dim=1)
|
||
|
# remove the first channel (background)
|
||
|
# output = output[:, 1:, :, :]
|
||
|
# remove the second channel (vessels)
|
||
|
# output = output[:, :1, :, :]
|
||
|
# output = output[:, :1, :, :]
|
||
|
print(output.shape)
|
||
|
mask = output.argmax(dim=1)
|
||
|
else:
|
||
|
mask = torch.sigmoid(output) > out_threshold
|
||
|
|
||
|
return mask[0].long().squeeze().numpy()
|
||
|
|
||
|
|
||
|
def get_args():
|
||
|
parser = argparse.ArgumentParser(description='Predict masks from input images')
|
||
|
parser.add_argument('--model', '-m', default='checkpoints/checkpoint_epoch24.pth', metavar='FILE',
|
||
|
help='Specify the file in which the model is stored')
|
||
|
parser.add_argument('--input', '-i', metavar='INPUT', nargs='+', help='Filenames of input images', required=True)
|
||
|
parser.add_argument('--output', '-o', metavar='OUTPUT', nargs='+', help='Filenames of output images')
|
||
|
parser.add_argument('--viz', '-v', action='store_true',
|
||
|
help='Visualize the images as they are processed')
|
||
|
parser.add_argument('--no-save', '-n', action='store_true', help='Do not save the output masks')
|
||
|
parser.add_argument('--mask-threshold', '-t', type=float, default=0.5,
|
||
|
help='Minimum probability value to consider a mask pixel white')
|
||
|
parser.add_argument('--scale', '-s', type=float, default=0.5,
|
||
|
help='Scale factor for the input images')
|
||
|
parser.add_argument('--bilinear', action='store_true', default=False, help='Use bilinear upsampling')
|
||
|
parser.add_argument('--classes', '-c', type=int, default=2, help='Number of classes')
|
||
|
|
||
|
return parser.parse_args()
|
||
|
|
||
|
|
||
|
def get_output_filenames(args):
|
||
|
def _generate_name(fn):
|
||
|
return f'{os.path.splitext(fn)[0]}_OUT.png'
|
||
|
|
||
|
return args.output or list(map(_generate_name, args.input))
|
||
|
|
||
|
|
||
|
def mask_to_image(mask: np.ndarray, mask_values):
|
||
|
if isinstance(mask_values[0], list):
|
||
|
out = np.zeros((mask.shape[-2], mask.shape[-1], len(mask_values[0])), dtype=np.uint8)
|
||
|
elif mask_values == [0, 1]:
|
||
|
out = np.zeros((mask.shape[-2], mask.shape[-1]), dtype=bool)
|
||
|
else:
|
||
|
out = np.zeros((mask.shape[-2], mask.shape[-1]), dtype=np.uint8)
|
||
|
|
||
|
if mask.ndim == 3:
|
||
|
mask = np.argmax(mask, axis=0)
|
||
|
|
||
|
for i, v in enumerate(mask_values):
|
||
|
out[mask == i] = v
|
||
|
|
||
|
return Image.fromarray(out)
|
||
|
|
||
|
|
||
|
def MainSolve(model_path, input_files, output_files=None, visualize=False, no_save=False, mask_threshold=0.5, scale=0.5,
|
||
|
bilinear=False, num_classes=2):
|
||
|
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
|
||
|
|
||
|
in_files = input_files
|
||
|
out_files = output_files if output_files else [f"{os.path.splitext(fn)[0]}_OUT.png" for fn in input_files]
|
||
|
|
||
|
net = UResnet34(n_channels=3, n_classes=num_classes, bilinear=bilinear)
|
||
|
|
||
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||
|
logging.info(f'Loading model {model_path}')
|
||
|
logging.info(f'Using device {device}')
|
||
|
|
||
|
net.to(device=device)
|
||
|
state_dict = torch.load(model_path, map_location=device)
|
||
|
mask_values = state_dict.pop('mask_values', [0, 1])
|
||
|
net.load_state_dict(state_dict, strict=False)
|
||
|
|
||
|
logging.info('Model loaded!')
|
||
|
|
||
|
for i, filename in enumerate(in_files):
|
||
|
logging.info(f'Predicting image {filename} ...')
|
||
|
img = Image.open(filename)
|
||
|
true_mask = Image.open(filename.replace('image_1', 'mask'))
|
||
|
|
||
|
mask = predict_img(net=net,
|
||
|
full_img=img,
|
||
|
scale_factor=scale,
|
||
|
out_threshold=mask_threshold,
|
||
|
device=device)
|
||
|
|
||
|
if not no_save:
|
||
|
out_filename = out_files[i]
|
||
|
result = mask_to_image(mask, mask_values)
|
||
|
result.putpalette([
|
||
|
0, 0, 0, # Black background
|
||
|
255, 255, 255, # Class 1
|
||
|
0, 0, 255, # Class 2
|
||
|
0, 255, 0, # Class 3
|
||
|
])
|
||
|
result.save(out_filename)
|
||
|
logging.info(f'Mask saved to {out_filename}')
|
||
|
|
||
|
plt.figure(figsize=(10, 10))
|
||
|
plt.subplot(1, 3, 1)
|
||
|
plt.imshow(img)
|
||
|
plt.axis('off')
|
||
|
plt.title('Original Image')
|
||
|
plt.subplot(1, 3, 2)
|
||
|
plt.imshow(result)
|
||
|
plt.axis('off')
|
||
|
plt.title('Predicted Mask')
|
||
|
plt.subplot(1, 3, 3)
|
||
|
|
||
|
true_mask = mask_to_image(np.asarray(true_mask), mask_values)
|
||
|
true_mask.putpalette([
|
||
|
0, 0, 0, # Black background
|
||
|
255, 255, 255, # Class 1
|
||
|
0, 0, 255, # Class 2
|
||
|
0, 255, 0, # Class 3
|
||
|
])
|
||
|
plt.imshow(true_mask)
|
||
|
plt.axis('off')
|
||
|
plt.title('True Mask')
|
||
|
plt.show()
|
||
|
plt.savefig('res_comparsion')
|
||
|
|
||
|
if visualize:
|
||
|
logging.info(f'Visualizing results for image {filename}, close to continue...')
|
||
|
plot_img_and_mask(img, mask)
|
||
|
|
||
|
def solve(model_path, input_file, output_file=None, visualize=False, no_save=False, mask_threshold=0.5, scale=0.5,
|
||
|
bilinear=False, num_classes=2):
|
||
|
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
|
||
|
|
||
|
|
||
|
net = UResnet34(n_channels=3, n_classes=num_classes, bilinear=bilinear)
|
||
|
|
||
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||
|
logging.info(f'Loading model {model_path}')
|
||
|
logging.info(f'Using device {device}')
|
||
|
|
||
|
net.to(device=device)
|
||
|
state_dict = torch.load(model_path, map_location=device)
|
||
|
mask_values = state_dict.pop('mask_values', [0, 1])
|
||
|
net.load_state_dict(state_dict, strict=False)
|
||
|
|
||
|
logging.info('Model loaded!')
|
||
|
|
||
|
filename = input_file
|
||
|
logging.info(f'Predicting image {filename} ...')
|
||
|
img = Image.open(filename)
|
||
|
true_mask = Image.open(filename.replace('image_1', 'mask'))
|
||
|
mask = predict_img(net=net,
|
||
|
full_img=img,
|
||
|
scale_factor=scale,
|
||
|
out_threshold=mask_threshold,
|
||
|
device=device)
|
||
|
|
||
|
if not no_save:
|
||
|
out_filename = output_file
|
||
|
result = mask_to_image(mask, mask_values)
|
||
|
result.putpalette([
|
||
|
0, 0, 0, # Black background
|
||
|
255, 255, 255, # Class 1
|
||
|
0, 0, 255, # Class 2
|
||
|
0, 255, 0, # Class 3
|
||
|
])
|
||
|
result.save(out_filename)
|
||
|
logging.info(f'Mask saved to {out_filename}')
|
||
|
return result
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
args = get_args()
|
||
|
MainSolve(model_path=args.model,
|
||
|
input_files=args.input,
|
||
|
output_files=args.output,
|
||
|
visualize=args.viz,
|
||
|
no_save=args.no_save,
|
||
|
mask_threshold=args.mask_threshold,
|
||
|
scale=args.scale,
|
||
|
bilinear=args.bilinear,
|
||
|
num_classes=args.classes)
|