import torch from torch import Tensor def dice_coeff(input: Tensor, target: Tensor, reduce_batch_first: bool = False, epsilon: float = 1e-6): # Average of Dice coefficient for all batches, or for a single mask assert input.size() == target.size() assert input.dim() == 3 or not reduce_batch_first sum_dim = (-1, -2) if input.dim() == 2 or not reduce_batch_first else (-1, -2, -3) inter = 2 * (input * target).sum(dim=sum_dim) sets_sum = input.sum(dim=sum_dim) + target.sum(dim=sum_dim) sets_sum = torch.where(sets_sum == 0, inter, sets_sum) dice = (inter + epsilon) / (sets_sum + epsilon) return dice.mean() def multiclass_dice_coeff(input: Tensor, target: Tensor, reduce_batch_first: bool = False, epsilon: float = 1e-6): # Average of Dice coefficient for all classes return dice_coeff(input.flatten(0, 1), target.flatten(0, 1), reduce_batch_first, epsilon) def dice_loss(input: Tensor, target: Tensor, multiclass: bool = False): # Dice loss (objective to minimize) between 0 and 1 fn = multiclass_dice_coeff if multiclass else dice_coeff return 1 - fn(input, target, reduce_batch_first=True)