From eba6d6049d65055ff8bd4d3583b94357601e08d8 Mon Sep 17 00:00:00 2001 From: pioc37juv <1245880206@qq.com> Date: Wed, 18 Sep 2024 19:51:21 +0800 Subject: [PATCH] ADD file via upload --- (3)数据分析.py | 51 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 51 insertions(+) create mode 100644 (3)数据分析.py diff --git a/(3)数据分析.py b/(3)数据分析.py new file mode 100644 index 0000000..b507b4d --- /dev/null +++ b/(3)数据分析.py @@ -0,0 +1,51 @@ +# -*- coding: utf-8 -*- +# 作者:Halcyon(王思平102201544) + +import os +import pandas as pd +import jieba +from collections import Counter + + +def read_excel_and_count_words(file_path, sheet_name='Sheet1', column_name='内容'): + # 1、读取excel文件的指定表格和列 + df = pd.read_excel(file_path, sheet_name=sheet_name) + + if column_name not in df.columns: + print(f"列名 '{column_name}' 在 Excel 文件中未找到。") + return + + # 2、获取指定列的文本内容 + report = ' '.join(df[column_name].astype(str).tolist()) # 将所有行合并为一个字符串 + + # 3、进行分词 + words = jieba.cut(report) + + # 4、按指定长度提取词 + report_words = [word for word in words if len(word) >= 3] + + # 5、统计高频词汇 + result = Counter(report_words).most_common(50) + + # 6、输出结果 + print("高频词汇统计结果:") + for word, count in result: + print(f"{word}: {count}") + + # 7、保存高频词及其频率到excel文件 + result_df = pd.DataFrame(result, columns=['词汇', '频率']) # 创建DataFrame + + output_folder = 'output' # 指定输出文件夹 + if not os.path.exists(output_folder): # 如果文件夹不存在就创建它 + os.makedirs(output_folder) + output_file = os.path.join(output_folder, '高频词.xlsx') + + result_df.to_excel(output_file, index=False, sheet_name='高频词汇') # 保存到excel文件 + + +if __name__ == '__main__': + file_path = 'output\\合并弹幕.xlsx' # 要分析的excel文件路径 + sheet_name = 'MergedData' # 工作表名称 + column_name = '弹幕文本' # 弹幕所在列名 + + read_excel_and_count_words(file_path, sheet_name, column_name)