You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
696 lines
22 KiB
696 lines
22 KiB
__all__: list[str] = []
|
|
|
|
import cv2
|
|
import cv2.typing
|
|
import typing as _typing
|
|
|
|
|
|
# Enumerations
|
|
VAR_NUMERICAL: int
|
|
VAR_ORDERED: int
|
|
VAR_CATEGORICAL: int
|
|
VariableTypes = int
|
|
"""One of [VAR_NUMERICAL, VAR_ORDERED, VAR_CATEGORICAL]"""
|
|
|
|
TEST_ERROR: int
|
|
TRAIN_ERROR: int
|
|
ErrorTypes = int
|
|
"""One of [TEST_ERROR, TRAIN_ERROR]"""
|
|
|
|
ROW_SAMPLE: int
|
|
COL_SAMPLE: int
|
|
SampleTypes = int
|
|
"""One of [ROW_SAMPLE, COL_SAMPLE]"""
|
|
|
|
|
|
StatModel_UPDATE_MODEL: int
|
|
STAT_MODEL_UPDATE_MODEL: int
|
|
StatModel_RAW_OUTPUT: int
|
|
STAT_MODEL_RAW_OUTPUT: int
|
|
StatModel_COMPRESSED_INPUT: int
|
|
STAT_MODEL_COMPRESSED_INPUT: int
|
|
StatModel_PREPROCESSED_INPUT: int
|
|
STAT_MODEL_PREPROCESSED_INPUT: int
|
|
StatModel_Flags = int
|
|
"""One of [StatModel_UPDATE_MODEL, STAT_MODEL_UPDATE_MODEL, StatModel_RAW_OUTPUT, STAT_MODEL_RAW_OUTPUT, StatModel_COMPRESSED_INPUT, STAT_MODEL_COMPRESSED_INPUT, StatModel_PREPROCESSED_INPUT, STAT_MODEL_PREPROCESSED_INPUT]"""
|
|
|
|
KNearest_BRUTE_FORCE: int
|
|
KNEAREST_BRUTE_FORCE: int
|
|
KNearest_KDTREE: int
|
|
KNEAREST_KDTREE: int
|
|
KNearest_Types = int
|
|
"""One of [KNearest_BRUTE_FORCE, KNEAREST_BRUTE_FORCE, KNearest_KDTREE, KNEAREST_KDTREE]"""
|
|
|
|
SVM_C_SVC: int
|
|
SVM_NU_SVC: int
|
|
SVM_ONE_CLASS: int
|
|
SVM_EPS_SVR: int
|
|
SVM_NU_SVR: int
|
|
SVM_Types = int
|
|
"""One of [SVM_C_SVC, SVM_NU_SVC, SVM_ONE_CLASS, SVM_EPS_SVR, SVM_NU_SVR]"""
|
|
|
|
SVM_CUSTOM: int
|
|
SVM_LINEAR: int
|
|
SVM_POLY: int
|
|
SVM_RBF: int
|
|
SVM_SIGMOID: int
|
|
SVM_CHI2: int
|
|
SVM_INTER: int
|
|
SVM_KernelTypes = int
|
|
"""One of [SVM_CUSTOM, SVM_LINEAR, SVM_POLY, SVM_RBF, SVM_SIGMOID, SVM_CHI2, SVM_INTER]"""
|
|
|
|
SVM_C: int
|
|
SVM_GAMMA: int
|
|
SVM_P: int
|
|
SVM_NU: int
|
|
SVM_COEF: int
|
|
SVM_DEGREE: int
|
|
SVM_ParamTypes = int
|
|
"""One of [SVM_C, SVM_GAMMA, SVM_P, SVM_NU, SVM_COEF, SVM_DEGREE]"""
|
|
|
|
EM_COV_MAT_SPHERICAL: int
|
|
EM_COV_MAT_DIAGONAL: int
|
|
EM_COV_MAT_GENERIC: int
|
|
EM_COV_MAT_DEFAULT: int
|
|
EM_Types = int
|
|
"""One of [EM_COV_MAT_SPHERICAL, EM_COV_MAT_DIAGONAL, EM_COV_MAT_GENERIC, EM_COV_MAT_DEFAULT]"""
|
|
|
|
EM_DEFAULT_NCLUSTERS: int
|
|
EM_DEFAULT_MAX_ITERS: int
|
|
EM_START_E_STEP: int
|
|
EM_START_M_STEP: int
|
|
EM_START_AUTO_STEP: int
|
|
|
|
DTrees_PREDICT_AUTO: int
|
|
DTREES_PREDICT_AUTO: int
|
|
DTrees_PREDICT_SUM: int
|
|
DTREES_PREDICT_SUM: int
|
|
DTrees_PREDICT_MAX_VOTE: int
|
|
DTREES_PREDICT_MAX_VOTE: int
|
|
DTrees_PREDICT_MASK: int
|
|
DTREES_PREDICT_MASK: int
|
|
DTrees_Flags = int
|
|
"""One of [DTrees_PREDICT_AUTO, DTREES_PREDICT_AUTO, DTrees_PREDICT_SUM, DTREES_PREDICT_SUM, DTrees_PREDICT_MAX_VOTE, DTREES_PREDICT_MAX_VOTE, DTrees_PREDICT_MASK, DTREES_PREDICT_MASK]"""
|
|
|
|
Boost_DISCRETE: int
|
|
BOOST_DISCRETE: int
|
|
Boost_REAL: int
|
|
BOOST_REAL: int
|
|
Boost_LOGIT: int
|
|
BOOST_LOGIT: int
|
|
Boost_GENTLE: int
|
|
BOOST_GENTLE: int
|
|
Boost_Types = int
|
|
"""One of [Boost_DISCRETE, BOOST_DISCRETE, Boost_REAL, BOOST_REAL, Boost_LOGIT, BOOST_LOGIT, Boost_GENTLE, BOOST_GENTLE]"""
|
|
|
|
ANN_MLP_BACKPROP: int
|
|
ANN_MLP_RPROP: int
|
|
ANN_MLP_ANNEAL: int
|
|
ANN_MLP_TrainingMethods = int
|
|
"""One of [ANN_MLP_BACKPROP, ANN_MLP_RPROP, ANN_MLP_ANNEAL]"""
|
|
|
|
ANN_MLP_IDENTITY: int
|
|
ANN_MLP_SIGMOID_SYM: int
|
|
ANN_MLP_GAUSSIAN: int
|
|
ANN_MLP_RELU: int
|
|
ANN_MLP_LEAKYRELU: int
|
|
ANN_MLP_ActivationFunctions = int
|
|
"""One of [ANN_MLP_IDENTITY, ANN_MLP_SIGMOID_SYM, ANN_MLP_GAUSSIAN, ANN_MLP_RELU, ANN_MLP_LEAKYRELU]"""
|
|
|
|
ANN_MLP_UPDATE_WEIGHTS: int
|
|
ANN_MLP_NO_INPUT_SCALE: int
|
|
ANN_MLP_NO_OUTPUT_SCALE: int
|
|
ANN_MLP_TrainFlags = int
|
|
"""One of [ANN_MLP_UPDATE_WEIGHTS, ANN_MLP_NO_INPUT_SCALE, ANN_MLP_NO_OUTPUT_SCALE]"""
|
|
|
|
LogisticRegression_REG_DISABLE: int
|
|
LOGISTIC_REGRESSION_REG_DISABLE: int
|
|
LogisticRegression_REG_L1: int
|
|
LOGISTIC_REGRESSION_REG_L1: int
|
|
LogisticRegression_REG_L2: int
|
|
LOGISTIC_REGRESSION_REG_L2: int
|
|
LogisticRegression_RegKinds = int
|
|
"""One of [LogisticRegression_REG_DISABLE, LOGISTIC_REGRESSION_REG_DISABLE, LogisticRegression_REG_L1, LOGISTIC_REGRESSION_REG_L1, LogisticRegression_REG_L2, LOGISTIC_REGRESSION_REG_L2]"""
|
|
|
|
LogisticRegression_BATCH: int
|
|
LOGISTIC_REGRESSION_BATCH: int
|
|
LogisticRegression_MINI_BATCH: int
|
|
LOGISTIC_REGRESSION_MINI_BATCH: int
|
|
LogisticRegression_Methods = int
|
|
"""One of [LogisticRegression_BATCH, LOGISTIC_REGRESSION_BATCH, LogisticRegression_MINI_BATCH, LOGISTIC_REGRESSION_MINI_BATCH]"""
|
|
|
|
SVMSGD_SGD: int
|
|
SVMSGD_ASGD: int
|
|
SVMSGD_SvmsgdType = int
|
|
"""One of [SVMSGD_SGD, SVMSGD_ASGD]"""
|
|
|
|
SVMSGD_SOFT_MARGIN: int
|
|
SVMSGD_HARD_MARGIN: int
|
|
SVMSGD_MarginType = int
|
|
"""One of [SVMSGD_SOFT_MARGIN, SVMSGD_HARD_MARGIN]"""
|
|
|
|
|
|
# Classes
|
|
class ParamGrid:
|
|
minVal: float
|
|
maxVal: float
|
|
logStep: float
|
|
|
|
# Functions
|
|
@classmethod
|
|
def create(cls, minVal: float = ..., maxVal: float = ..., logstep: float = ...) -> ParamGrid: ...
|
|
|
|
|
|
class TrainData:
|
|
# Functions
|
|
def getLayout(self) -> int: ...
|
|
|
|
def getNTrainSamples(self) -> int: ...
|
|
|
|
def getNTestSamples(self) -> int: ...
|
|
|
|
def getNSamples(self) -> int: ...
|
|
|
|
def getNVars(self) -> int: ...
|
|
|
|
def getNAllVars(self) -> int: ...
|
|
|
|
@_typing.overload
|
|
def getSample(self, varIdx: cv2.typing.MatLike, sidx: int, buf: float) -> None: ...
|
|
@_typing.overload
|
|
def getSample(self, varIdx: cv2.UMat, sidx: int, buf: float) -> None: ...
|
|
|
|
def getSamples(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getMissing(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getTrainSamples(self, layout: int = ..., compressSamples: bool = ..., compressVars: bool = ...) -> cv2.typing.MatLike: ...
|
|
|
|
def getTrainResponses(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getTrainNormCatResponses(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getTestResponses(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getTestNormCatResponses(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getResponses(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getNormCatResponses(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getSampleWeights(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getTrainSampleWeights(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getTestSampleWeights(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getVarIdx(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getVarType(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getVarSymbolFlags(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getResponseType(self) -> int: ...
|
|
|
|
def getTrainSampleIdx(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getTestSampleIdx(self) -> cv2.typing.MatLike: ...
|
|
|
|
@_typing.overload
|
|
def getValues(self, vi: int, sidx: cv2.typing.MatLike, values: float) -> None: ...
|
|
@_typing.overload
|
|
def getValues(self, vi: int, sidx: cv2.UMat, values: float) -> None: ...
|
|
|
|
def getDefaultSubstValues(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getCatCount(self, vi: int) -> int: ...
|
|
|
|
def getClassLabels(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getCatOfs(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getCatMap(self) -> cv2.typing.MatLike: ...
|
|
|
|
def setTrainTestSplit(self, count: int, shuffle: bool = ...) -> None: ...
|
|
|
|
def setTrainTestSplitRatio(self, ratio: float, shuffle: bool = ...) -> None: ...
|
|
|
|
def shuffleTrainTest(self) -> None: ...
|
|
|
|
def getTestSamples(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getNames(self, names: _typing.Sequence[str]) -> None: ...
|
|
|
|
@staticmethod
|
|
def getSubVector(vec: cv2.typing.MatLike, idx: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
|
|
|
|
@staticmethod
|
|
def getSubMatrix(matrix: cv2.typing.MatLike, idx: cv2.typing.MatLike, layout: int) -> cv2.typing.MatLike: ...
|
|
|
|
@classmethod
|
|
@_typing.overload
|
|
def create(cls, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, varIdx: cv2.typing.MatLike | None = ..., sampleIdx: cv2.typing.MatLike | None = ..., sampleWeights: cv2.typing.MatLike | None = ..., varType: cv2.typing.MatLike | None = ...) -> TrainData: ...
|
|
@classmethod
|
|
@_typing.overload
|
|
def create(cls, samples: cv2.UMat, layout: int, responses: cv2.UMat, varIdx: cv2.UMat | None = ..., sampleIdx: cv2.UMat | None = ..., sampleWeights: cv2.UMat | None = ..., varType: cv2.UMat | None = ...) -> TrainData: ...
|
|
|
|
|
|
class StatModel(cv2.Algorithm):
|
|
# Functions
|
|
def getVarCount(self) -> int: ...
|
|
|
|
def empty(self) -> bool: ...
|
|
|
|
def isTrained(self) -> bool: ...
|
|
|
|
def isClassifier(self) -> bool: ...
|
|
|
|
@_typing.overload
|
|
def train(self, trainData: TrainData, flags: int = ...) -> bool: ...
|
|
@_typing.overload
|
|
def train(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike) -> bool: ...
|
|
@_typing.overload
|
|
def train(self, samples: cv2.UMat, layout: int, responses: cv2.UMat) -> bool: ...
|
|
|
|
@_typing.overload
|
|
def calcError(self, data: TrainData, test: bool, resp: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike]: ...
|
|
@_typing.overload
|
|
def calcError(self, data: TrainData, test: bool, resp: cv2.UMat | None = ...) -> tuple[float, cv2.UMat]: ...
|
|
|
|
@_typing.overload
|
|
def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
|
|
@_typing.overload
|
|
def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
|
|
|
|
|
|
class NormalBayesClassifier(StatModel):
|
|
# Functions
|
|
@_typing.overload
|
|
def predictProb(self, inputs: cv2.typing.MatLike, outputs: cv2.typing.MatLike | None = ..., outputProbs: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
@_typing.overload
|
|
def predictProb(self, inputs: cv2.UMat, outputs: cv2.UMat | None = ..., outputProbs: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ...
|
|
|
|
@classmethod
|
|
def create(cls) -> NormalBayesClassifier: ...
|
|
|
|
@classmethod
|
|
def load(cls, filepath: str, nodeName: str = ...) -> NormalBayesClassifier: ...
|
|
|
|
|
|
class KNearest(StatModel):
|
|
# Functions
|
|
def getDefaultK(self) -> int: ...
|
|
|
|
def setDefaultK(self, val: int) -> None: ...
|
|
|
|
def getIsClassifier(self) -> bool: ...
|
|
|
|
def setIsClassifier(self, val: bool) -> None: ...
|
|
|
|
def getEmax(self) -> int: ...
|
|
|
|
def setEmax(self, val: int) -> None: ...
|
|
|
|
def getAlgorithmType(self) -> int: ...
|
|
|
|
def setAlgorithmType(self, val: int) -> None: ...
|
|
|
|
@_typing.overload
|
|
def findNearest(self, samples: cv2.typing.MatLike, k: int, results: cv2.typing.MatLike | None = ..., neighborResponses: cv2.typing.MatLike | None = ..., dist: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
@_typing.overload
|
|
def findNearest(self, samples: cv2.UMat, k: int, results: cv2.UMat | None = ..., neighborResponses: cv2.UMat | None = ..., dist: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat, cv2.UMat]: ...
|
|
|
|
@classmethod
|
|
def create(cls) -> KNearest: ...
|
|
|
|
@classmethod
|
|
def load(cls, filepath: str) -> KNearest: ...
|
|
|
|
|
|
class SVM(StatModel):
|
|
# Functions
|
|
def getType(self) -> int: ...
|
|
|
|
def setType(self, val: int) -> None: ...
|
|
|
|
def getGamma(self) -> float: ...
|
|
|
|
def setGamma(self, val: float) -> None: ...
|
|
|
|
def getCoef0(self) -> float: ...
|
|
|
|
def setCoef0(self, val: float) -> None: ...
|
|
|
|
def getDegree(self) -> float: ...
|
|
|
|
def setDegree(self, val: float) -> None: ...
|
|
|
|
def getC(self) -> float: ...
|
|
|
|
def setC(self, val: float) -> None: ...
|
|
|
|
def getNu(self) -> float: ...
|
|
|
|
def setNu(self, val: float) -> None: ...
|
|
|
|
def getP(self) -> float: ...
|
|
|
|
def setP(self, val: float) -> None: ...
|
|
|
|
def getClassWeights(self) -> cv2.typing.MatLike: ...
|
|
|
|
def setClassWeights(self, val: cv2.typing.MatLike) -> None: ...
|
|
|
|
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
|
|
|
|
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
|
|
|
|
def getKernelType(self) -> int: ...
|
|
|
|
def setKernel(self, kernelType: int) -> None: ...
|
|
|
|
@_typing.overload
|
|
def trainAuto(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ...
|
|
@_typing.overload
|
|
def trainAuto(self, samples: cv2.UMat, layout: int, responses: cv2.UMat, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ...
|
|
|
|
def getSupportVectors(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getUncompressedSupportVectors(self) -> cv2.typing.MatLike: ...
|
|
|
|
@_typing.overload
|
|
def getDecisionFunction(self, i: int, alpha: cv2.typing.MatLike | None = ..., svidx: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
@_typing.overload
|
|
def getDecisionFunction(self, i: int, alpha: cv2.UMat | None = ..., svidx: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ...
|
|
|
|
@staticmethod
|
|
def getDefaultGridPtr(param_id: int) -> ParamGrid: ...
|
|
|
|
@classmethod
|
|
def create(cls) -> SVM: ...
|
|
|
|
@classmethod
|
|
def load(cls, filepath: str) -> SVM: ...
|
|
|
|
|
|
class EM(StatModel):
|
|
# Functions
|
|
def getClustersNumber(self) -> int: ...
|
|
|
|
def setClustersNumber(self, val: int) -> None: ...
|
|
|
|
def getCovarianceMatrixType(self) -> int: ...
|
|
|
|
def setCovarianceMatrixType(self, val: int) -> None: ...
|
|
|
|
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
|
|
|
|
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
|
|
|
|
def getWeights(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getMeans(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getCovs(self, covs: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> _typing.Sequence[cv2.typing.MatLike]: ...
|
|
|
|
@_typing.overload
|
|
def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
|
|
@_typing.overload
|
|
def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
|
|
|
|
@_typing.overload
|
|
def predict2(self, sample: cv2.typing.MatLike, probs: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.Vec2d, cv2.typing.MatLike]: ...
|
|
@_typing.overload
|
|
def predict2(self, sample: cv2.UMat, probs: cv2.UMat | None = ...) -> tuple[cv2.typing.Vec2d, cv2.UMat]: ...
|
|
|
|
@_typing.overload
|
|
def trainEM(self, samples: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
@_typing.overload
|
|
def trainEM(self, samples: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
|
|
|
|
@_typing.overload
|
|
def trainE(self, samples: cv2.typing.MatLike, means0: cv2.typing.MatLike, covs0: cv2.typing.MatLike | None = ..., weights0: cv2.typing.MatLike | None = ..., logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
@_typing.overload
|
|
def trainE(self, samples: cv2.UMat, means0: cv2.UMat, covs0: cv2.UMat | None = ..., weights0: cv2.UMat | None = ..., logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
|
|
|
|
@_typing.overload
|
|
def trainM(self, samples: cv2.typing.MatLike, probs0: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
@_typing.overload
|
|
def trainM(self, samples: cv2.UMat, probs0: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
|
|
|
|
@classmethod
|
|
def create(cls) -> EM: ...
|
|
|
|
@classmethod
|
|
def load(cls, filepath: str, nodeName: str = ...) -> EM: ...
|
|
|
|
|
|
class DTrees(StatModel):
|
|
# Functions
|
|
def getMaxCategories(self) -> int: ...
|
|
|
|
def setMaxCategories(self, val: int) -> None: ...
|
|
|
|
def getMaxDepth(self) -> int: ...
|
|
|
|
def setMaxDepth(self, val: int) -> None: ...
|
|
|
|
def getMinSampleCount(self) -> int: ...
|
|
|
|
def setMinSampleCount(self, val: int) -> None: ...
|
|
|
|
def getCVFolds(self) -> int: ...
|
|
|
|
def setCVFolds(self, val: int) -> None: ...
|
|
|
|
def getUseSurrogates(self) -> bool: ...
|
|
|
|
def setUseSurrogates(self, val: bool) -> None: ...
|
|
|
|
def getUse1SERule(self) -> bool: ...
|
|
|
|
def setUse1SERule(self, val: bool) -> None: ...
|
|
|
|
def getTruncatePrunedTree(self) -> bool: ...
|
|
|
|
def setTruncatePrunedTree(self, val: bool) -> None: ...
|
|
|
|
def getRegressionAccuracy(self) -> float: ...
|
|
|
|
def setRegressionAccuracy(self, val: float) -> None: ...
|
|
|
|
def getPriors(self) -> cv2.typing.MatLike: ...
|
|
|
|
def setPriors(self, val: cv2.typing.MatLike) -> None: ...
|
|
|
|
@classmethod
|
|
def create(cls) -> DTrees: ...
|
|
|
|
@classmethod
|
|
def load(cls, filepath: str, nodeName: str = ...) -> DTrees: ...
|
|
|
|
|
|
class RTrees(DTrees):
|
|
# Functions
|
|
def getCalculateVarImportance(self) -> bool: ...
|
|
|
|
def setCalculateVarImportance(self, val: bool) -> None: ...
|
|
|
|
def getActiveVarCount(self) -> int: ...
|
|
|
|
def setActiveVarCount(self, val: int) -> None: ...
|
|
|
|
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
|
|
|
|
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
|
|
|
|
def getVarImportance(self) -> cv2.typing.MatLike: ...
|
|
|
|
@_typing.overload
|
|
def getVotes(self, samples: cv2.typing.MatLike, flags: int, results: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
@_typing.overload
|
|
def getVotes(self, samples: cv2.UMat, flags: int, results: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
|
|
def getOOBError(self) -> float: ...
|
|
|
|
@classmethod
|
|
def create(cls) -> RTrees: ...
|
|
|
|
@classmethod
|
|
def load(cls, filepath: str, nodeName: str = ...) -> RTrees: ...
|
|
|
|
|
|
class Boost(DTrees):
|
|
# Functions
|
|
def getBoostType(self) -> int: ...
|
|
|
|
def setBoostType(self, val: int) -> None: ...
|
|
|
|
def getWeakCount(self) -> int: ...
|
|
|
|
def setWeakCount(self, val: int) -> None: ...
|
|
|
|
def getWeightTrimRate(self) -> float: ...
|
|
|
|
def setWeightTrimRate(self, val: float) -> None: ...
|
|
|
|
@classmethod
|
|
def create(cls) -> Boost: ...
|
|
|
|
@classmethod
|
|
def load(cls, filepath: str, nodeName: str = ...) -> Boost: ...
|
|
|
|
|
|
class ANN_MLP(StatModel):
|
|
# Functions
|
|
def setTrainMethod(self, method: int, param1: float = ..., param2: float = ...) -> None: ...
|
|
|
|
def getTrainMethod(self) -> int: ...
|
|
|
|
def setActivationFunction(self, type: int, param1: float = ..., param2: float = ...) -> None: ...
|
|
|
|
@_typing.overload
|
|
def setLayerSizes(self, _layer_sizes: cv2.typing.MatLike) -> None: ...
|
|
@_typing.overload
|
|
def setLayerSizes(self, _layer_sizes: cv2.UMat) -> None: ...
|
|
|
|
def getLayerSizes(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
|
|
|
|
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
|
|
|
|
def getBackpropWeightScale(self) -> float: ...
|
|
|
|
def setBackpropWeightScale(self, val: float) -> None: ...
|
|
|
|
def getBackpropMomentumScale(self) -> float: ...
|
|
|
|
def setBackpropMomentumScale(self, val: float) -> None: ...
|
|
|
|
def getRpropDW0(self) -> float: ...
|
|
|
|
def setRpropDW0(self, val: float) -> None: ...
|
|
|
|
def getRpropDWPlus(self) -> float: ...
|
|
|
|
def setRpropDWPlus(self, val: float) -> None: ...
|
|
|
|
def getRpropDWMinus(self) -> float: ...
|
|
|
|
def setRpropDWMinus(self, val: float) -> None: ...
|
|
|
|
def getRpropDWMin(self) -> float: ...
|
|
|
|
def setRpropDWMin(self, val: float) -> None: ...
|
|
|
|
def getRpropDWMax(self) -> float: ...
|
|
|
|
def setRpropDWMax(self, val: float) -> None: ...
|
|
|
|
def getAnnealInitialT(self) -> float: ...
|
|
|
|
def setAnnealInitialT(self, val: float) -> None: ...
|
|
|
|
def getAnnealFinalT(self) -> float: ...
|
|
|
|
def setAnnealFinalT(self, val: float) -> None: ...
|
|
|
|
def getAnnealCoolingRatio(self) -> float: ...
|
|
|
|
def setAnnealCoolingRatio(self, val: float) -> None: ...
|
|
|
|
def getAnnealItePerStep(self) -> int: ...
|
|
|
|
def setAnnealItePerStep(self, val: int) -> None: ...
|
|
|
|
def getWeights(self, layerIdx: int) -> cv2.typing.MatLike: ...
|
|
|
|
@classmethod
|
|
def create(cls) -> ANN_MLP: ...
|
|
|
|
@classmethod
|
|
def load(cls, filepath: str) -> ANN_MLP: ...
|
|
|
|
|
|
class LogisticRegression(StatModel):
|
|
# Functions
|
|
def getLearningRate(self) -> float: ...
|
|
|
|
def setLearningRate(self, val: float) -> None: ...
|
|
|
|
def getIterations(self) -> int: ...
|
|
|
|
def setIterations(self, val: int) -> None: ...
|
|
|
|
def getRegularization(self) -> int: ...
|
|
|
|
def setRegularization(self, val: int) -> None: ...
|
|
|
|
def getTrainMethod(self) -> int: ...
|
|
|
|
def setTrainMethod(self, val: int) -> None: ...
|
|
|
|
def getMiniBatchSize(self) -> int: ...
|
|
|
|
def setMiniBatchSize(self, val: int) -> None: ...
|
|
|
|
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
|
|
|
|
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
|
|
|
|
@_typing.overload
|
|
def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
|
|
@_typing.overload
|
|
def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
|
|
|
|
def get_learnt_thetas(self) -> cv2.typing.MatLike: ...
|
|
|
|
@classmethod
|
|
def create(cls) -> LogisticRegression: ...
|
|
|
|
@classmethod
|
|
def load(cls, filepath: str, nodeName: str = ...) -> LogisticRegression: ...
|
|
|
|
|
|
class SVMSGD(StatModel):
|
|
# Functions
|
|
def getWeights(self) -> cv2.typing.MatLike: ...
|
|
|
|
def getShift(self) -> float: ...
|
|
|
|
@classmethod
|
|
def create(cls) -> SVMSGD: ...
|
|
|
|
@classmethod
|
|
def load(cls, filepath: str, nodeName: str = ...) -> SVMSGD: ...
|
|
|
|
def setOptimalParameters(self, svmsgdType: int = ..., marginType: int = ...) -> None: ...
|
|
|
|
def getSvmsgdType(self) -> int: ...
|
|
|
|
def setSvmsgdType(self, svmsgdType: int) -> None: ...
|
|
|
|
def getMarginType(self) -> int: ...
|
|
|
|
def setMarginType(self, marginType: int) -> None: ...
|
|
|
|
def getMarginRegularization(self) -> float: ...
|
|
|
|
def setMarginRegularization(self, marginRegularization: float) -> None: ...
|
|
|
|
def getInitialStepSize(self) -> float: ...
|
|
|
|
def setInitialStepSize(self, InitialStepSize: float) -> None: ...
|
|
|
|
def getStepDecreasingPower(self) -> float: ...
|
|
|
|
def setStepDecreasingPower(self, stepDecreasingPower: float) -> None: ...
|
|
|
|
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
|
|
|
|
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
|
|
|
|
|
|
|