import pickle import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.metrics import accuracy_score import joblib # 加载数据集(使用你之前合并的feature_dataset00.pkl) def load_dataset(pkl_path): with open(pkl_path, 'rb') as f: data = pickle.load(f) return data['matrix'], data['label'] # 训练模型 def train_and_save_model(dataset_path, model_save_path, scaler_save_path): # 加载数据 X, y = load_dataset(dataset_path) print(f"加载数据集:{X.shape[0]}个样本,{X.shape[1]}维特征") # 划分训练集 X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42, stratify=y ) # 标准化 scaler = StandardScaler() X_train_std = scaler.fit_transform(X_train) X_test_std = scaler.transform(X_test) # 训练SVM svm = SVC(kernel='rbf', class_weight='balanced', probability=True, random_state=42) svm.fit(X_train_std, y_train) # 评估 y_pred = svm.predict(X_test_std) print(f"模型准确率:{accuracy_score(y_test, y_pred):.4f}") # 保存模型和标准化器 joblib.dump(svm, model_save_path) joblib.dump(scaler, scaler_save_path) print(f"模型已保存至:{model_save_path}") print(f"标准化器已保存至:{scaler_save_path}") if __name__ == "__main__": # 替换为你的数据集路径 DATASET_PATH = r"D:\SummerSchool\mat_cv\mat_cv\feature_dataset.pkl" # 模型保存路径(与GUI代码中设置的路径一致) MODEL_PATH = "svm_model.pkl" SCALER_PATH = "scaler.pkl" train_and_save_model(DATASET_PATH, MODEL_PATH, SCALER_PATH)