You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
git-02/01src/75%25%.py

59 lines
1.6 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
使用 75% 训练 / 25% 测试 的方式评估 SVM输出 ACC & AUC
"""
import pickle
import numpy as np
from pathlib import Path
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, roc_auc_score
# ---------- 1. 数据路径 ----------
PKL_PATH = Path(r"D:\Python\空心检测\pythonProject\feature_dataset.pkl")
# ---------- 2. 读取特征 ----------
def load_pkl_matrix(path: Path):
with open(path, "rb") as f:
data = pickle.load(f)
return data["matrix"], data["label"]
X, y = load_pkl_matrix(PKL_PATH)
y = y.ravel() # shape (N,)
# ---------- 3. 75% / 25% 拆分 ----------
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.25, random_state=42, stratify=y, shuffle=True
)
# ---------- 4. 标准化 + SVM ----------
scaler = StandardScaler().fit(X_train)
X_train_std = scaler.transform(X_train)
X_test_std = scaler.transform(X_test)
svm = SVC(
kernel="rbf",
C=10,
gamma="scale",
probability=True,
class_weight="balanced",
random_state=42,
)
svm.fit(X_train_std, y_train)
# ---------- 5. 评估 ----------
y_pred = svm.predict(X_test_std)
y_proba_pos = svm.predict_proba(X_test_std)[:, list(svm.classes_).index(1)]
acc = accuracy_score(y_test, y_pred)
auc = roc_auc_score(y_test, y_proba_pos)
print("\n========== 评估结果 ==========")
print(f"样本总数: {len(y)} | 训练: {len(y_train)} 测试: {len(y_test)}")
print(f"ACC = {acc:.4f}")
print(f"AUC = {auc:.4f}")