parent
0ed6867ef9
commit
5a756a6b88
@ -1,56 +1,56 @@
|
||||
import pandas as pd
|
||||
import jieba
|
||||
from wordcloud import WordCloud
|
||||
import matplotlib.pyplot as plt
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
|
||||
# 1. 读取停用词表
|
||||
def load_stopwords(file_path):
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
stopwords = set(line.strip() for line in f)
|
||||
return stopwords
|
||||
|
||||
# 2. 过滤停用词
|
||||
def remove_stopwords(words_list, stopwords):
|
||||
return [word for word in words_list if word not in stopwords and len(word) > 1]
|
||||
|
||||
# 3. 读取Excel文件并提取弹幕内容
|
||||
file_path = "danmu_data.xlsx"
|
||||
df = pd.read_excel(file_path)
|
||||
comments = df['danmu'].astype(str)
|
||||
text = ' '.join(comments)
|
||||
|
||||
# 4. 使用 jieba 分词
|
||||
words = jieba.cut(text, cut_all=False)
|
||||
|
||||
# 5. 加载停用词表
|
||||
stopwords_file = "D://edge//stop.txt" # 替换为实际路径
|
||||
stopwords = load_stopwords(stopwords_file)
|
||||
|
||||
# 6. 去除停用词
|
||||
filtered_words = remove_stopwords(words, stopwords)
|
||||
|
||||
# 7. 将过滤后的词汇重新拼接为一个字符串
|
||||
words_list = ' '.join(filtered_words)
|
||||
|
||||
# 8. 加载形状图片并生成词云
|
||||
mask = np.array(Image.open("D://edge//kk.png"))
|
||||
|
||||
wordcloud = WordCloud(
|
||||
font_path='simhei.ttf', # 确保支持中文
|
||||
background_color='white',
|
||||
mask=mask,
|
||||
contour_width=1,
|
||||
contour_color='black',
|
||||
width=800,
|
||||
height=600
|
||||
).generate(words_list)
|
||||
|
||||
# 9. 显示词云图
|
||||
plt.imshow(wordcloud, interpolation='bilinear')
|
||||
plt.axis("off")
|
||||
plt.show()
|
||||
|
||||
# 10. 保存词云图
|
||||
wordcloud.to_file("filtered_wordcloud.png")
|
||||
import pandas as pd
|
||||
import jieba
|
||||
from wordcloud import WordCloud
|
||||
import matplotlib.pyplot as plt
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
|
||||
# 读取停用词表
|
||||
def load_stopwords(file_path):
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
stopwords = set(line.strip() for line in f)
|
||||
return stopwords
|
||||
|
||||
# 过滤停用词
|
||||
def remove_stopwords(words_list, stopwords):
|
||||
return [word for word in words_list if word not in stopwords and len(word) > 1]
|
||||
|
||||
# 读取Excel文件并提取弹幕内容
|
||||
file_path = "danmu_data.xlsx"
|
||||
df = pd.read_excel(file_path)
|
||||
comments = df['danmu'].astype(str)
|
||||
text = ' '.join(comments)
|
||||
|
||||
# 使用 jieba 分词
|
||||
words = jieba.cut(text, cut_all=False)
|
||||
|
||||
# 加载停用词表
|
||||
stopwords_file = "D://edge//stop.txt" # 替换为实际路径
|
||||
stopwords = load_stopwords(stopwords_file)
|
||||
|
||||
# 去除停用词
|
||||
filtered_words = remove_stopwords(words, stopwords)
|
||||
|
||||
# 将过滤后的词汇重新拼接为一个字符串
|
||||
words_list = ' '.join(filtered_words)
|
||||
|
||||
# 加载形状图片并生成词云
|
||||
mask = np.array(Image.open("D://edge//kk.png"))
|
||||
|
||||
wordcloud = WordCloud(
|
||||
font_path='simhei.ttf', # 确保支持中文
|
||||
background_color='white',
|
||||
mask=mask,
|
||||
contour_width=1,
|
||||
contour_color='black',
|
||||
width=800,
|
||||
height=600
|
||||
).generate(words_list)
|
||||
|
||||
# 显示词云图
|
||||
plt.imshow(wordcloud, interpolation='bilinear')
|
||||
plt.axis("off")
|
||||
plt.show()
|
||||
|
||||
# 保存词云图
|
||||
wordcloud.to_file("filtered_wordcloud.png")
|
||||
|
Loading…
Reference in new issue