You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

101 lines
3.1 KiB

import requests
from bs4 import BeautifulSoup
import pandas as pd
import time
def get_danmu(urls):
# 从给定的 URL 列表中获取弹幕数据,并保存到 Excel 文件。
# 获取 BV 号
bv_ids = extract_bv_ids(urls)
# 获取 cid 号
cids = fetch_cids(bv_ids)
# 获取弹幕数据
danmu_data = fetch_danmu_data(cids)
# 解析弹幕数据
all_danmu = parse_danmu(danmu_data)
# 保存到 Excel 文件
save_danmu_to_excel(all_danmu)
return all_danmu
def extract_bv_ids(urls):
# 从 URL 列表中提取 BV 号。
bv_ids = []
for url in urls:
parts = url.split('/')
bv_ids.extend(part for part in parts if part.startswith('BV'))
return bv_ids
def fetch_cids(bv_ids):
# 根据 BV 号列表获取 cid 号列表。
cids = []
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36 Edg/128.0.0.0"
}
for bv_id in bv_ids:
url = f"https://api.bilibili.com/x/player/pagelist?bvid={bv_id}&jsonp=jsonp"
try:
response = requests.get(url, headers=headers)
response.raise_for_status()
data = response.json()
if data.get('code') == 0 and data.get('data'):
cids.append(data['data'][0]['cid'])
except requests.RequestException as e:
print(f"Error fetching CID for BV {bv_id}: {e}")
time.sleep(0.5) # 避免过于频繁的请求
print(f"CID count: {len(cids)}")
return cids
def fetch_danmu_data(cids):
# 根据 cid 号列表获取弹幕数据。
danmu_data = []
fail_count = 0
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36 Edg/128.0.0.0"
}
for cid in cids:
url = f"https://api.bilibili.com/x/v1/dm/list.so?oid={cid}"
try:
response = requests.get(url, headers=headers)
response.raise_for_status()
response.encoding = 'utf-8'
danmu_data.append(response.text)
except requests.RequestException as e:
print(f"Error fetching danmu for CID {cid}: {e}")
fail_count += 1
time.sleep(0.5) # 避免过于频繁的请求
print(f"Danmu data count: {len(danmu_data)}")
if fail_count > 0:
print(f"Failed to fetch {fail_count} danmu data pages")
return danmu_data
def parse_danmu(danmu_data):
# 解析弹幕数据。
all_danmu = []
for html in danmu_data:
soup = BeautifulSoup(html, 'html.parser')
all_danmu.extend(d.get_text() for d in soup.find_all('d'))
print(f"Total danmu count: {len(all_danmu)}")
return all_danmu
def save_danmu_to_excel(all_danmu):
# 将弹幕数据保存到 Excel 文件。
df = pd.DataFrame({'danmu': all_danmu})
df.to_excel("all_danmu_data.xlsx", index=False, engine='openpyxl')
print("Danmu data saved to all_danmu_data.xlsx")