|
|
import re
|
|
|
import ftfy
|
|
|
import json
|
|
|
import spacy
|
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
def get_pairs(word):
|
|
|
"""
|
|
|
Return set of symbol pairs in a word.
|
|
|
word is represented as tuple of symbols (symbols being variable-length strings)
|
|
|
"""
|
|
|
pairs = set()
|
|
|
prev_char = word[0]
|
|
|
for char in word[1:]:
|
|
|
pairs.add((prev_char, char))
|
|
|
prev_char = char
|
|
|
return pairs
|
|
|
|
|
|
def text_standardize(text):
|
|
|
"""
|
|
|
fixes some issues the spacy tokenizer had on books corpus
|
|
|
also does some whitespace standardization
|
|
|
"""
|
|
|
text = text.replace('—', '-')
|
|
|
text = text.replace('–', '-')
|
|
|
text = text.replace('―', '-')
|
|
|
text = text.replace('…', '...')
|
|
|
text = text.replace('´', "'")
|
|
|
text = re.sub('''(-+|~+|!+|"+|;+|\?+|\++|,+|\)+|\(+|\\+|\/+|\*+|\[+|\]+|}+|{+|\|+|_+)''', r' \1 ', text)
|
|
|
text = re.sub('\s*\n\s*', ' \n ', text)
|
|
|
text = re.sub('[^\S\n]+', ' ', text)
|
|
|
return text.strip()
|
|
|
|
|
|
class TextEncoder(object):
|
|
|
"""
|
|
|
mostly a wrapper for a public python bpe tokenizer
|
|
|
"""
|
|
|
|
|
|
def __init__(self, encoder_path, bpe_path):
|
|
|
self.nlp = spacy.load("en_core_web_sm", disable=['parser', 'tagger', 'ner', 'textcat'])
|
|
|
self.encoder = json.load(open(encoder_path))
|
|
|
self.decoder = {v:k for k,v in self.encoder.items()}
|
|
|
merges = open(bpe_path,encoding='utf-8').read().split('\n')[1:-1]
|
|
|
merges = [tuple(merge.split()) for merge in merges]
|
|
|
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
|
|
self.cache = {}
|
|
|
|
|
|
def bpe(self, token):
|
|
|
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
|
|
if token in self.cache:
|
|
|
return self.cache[token]
|
|
|
pairs = get_pairs(word)
|
|
|
|
|
|
if not pairs:
|
|
|
return token+'</w>'
|
|
|
|
|
|
while True:
|
|
|
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
|
|
if bigram not in self.bpe_ranks:
|
|
|
break
|
|
|
first, second = bigram
|
|
|
new_word = []
|
|
|
i = 0
|
|
|
while i < len(word):
|
|
|
try:
|
|
|
j = word.index(first, i)
|
|
|
new_word.extend(word[i:j])
|
|
|
i = j
|
|
|
except:
|
|
|
new_word.extend(word[i:])
|
|
|
break
|
|
|
|
|
|
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
|
|
new_word.append(first+second)
|
|
|
i += 2
|
|
|
else:
|
|
|
new_word.append(word[i])
|
|
|
i += 1
|
|
|
new_word = tuple(new_word)
|
|
|
word = new_word
|
|
|
if len(word) == 1:
|
|
|
break
|
|
|
else:
|
|
|
pairs = get_pairs(word)
|
|
|
word = ' '.join(word)
|
|
|
if word == '\n </w>':
|
|
|
word = '\n</w>'
|
|
|
self.cache[token] = word
|
|
|
return word
|
|
|
|
|
|
def encode(self, texts, verbose=True):
|
|
|
texts_tokens = []
|
|
|
if verbose:
|
|
|
for text in tqdm(texts, ncols=80, leave=False):
|
|
|
text = self.nlp(text_standardize(ftfy.fix_text(text)))
|
|
|
text_tokens = []
|
|
|
for token in text:
|
|
|
text_tokens.extend([self.encoder.get(t, 0) for t in self.bpe(token.text.lower()).split(' ')])
|
|
|
texts_tokens.append(text_tokens)
|
|
|
else:
|
|
|
for text in texts:
|
|
|
text = self.nlp(text_standardize(ftfy.fix_text(text)))
|
|
|
text_tokens = []
|
|
|
for token in text:
|
|
|
text_tokens.extend([self.encoder.get(t, 0) for t in self.bpe(token.text.lower()).split(' ')])
|
|
|
texts_tokens.append(text_tokens)
|
|
|
return texts_tokens
|