|
|
|
|
# UrbanHighwayNavigationSystem
|
|
|
|
|
|
|
|
|
|
# 项目名称 城市公路导航系统
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
杨腾泽,刘鑫成,李培毅,孙英皓
|
|
|
|
|
```
|
|
|
|
|
**摘要**:本项目针对什么问题,实现了哪些功能。为了有效地存储和处理何种数据,采用了何种数据结构。为了解决什么问题,采用了什么算法,算法效率如何。针对其他特定需求做了哪些工作。项目的整体效果如何,有何亮点和创新。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
任务分工及完成情况。
|
|
|
|
|
| 任务 | 设计 | 开发 | 测试 | 文档 |
|
|
|
|
|
| ---- | ---- | ---- | ---- | ---- |
|
|
|
|
|
| 1. 系统分析 | 杨腾泽 | 杨腾泽 | 刘鑫成 | 杨腾泽 |
|
|
|
|
|
| 2. 系统设计 | 团队 | 团队 | 孙英皓 | 杨腾泽 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
工作量占比。
|
|
|
|
|
|
|
|
|
|
| 杨腾泽 | 孙英皓 | 李培毅 | 刘鑫成 |
|
|
|
|
|
|--------|-------|---------|-------|
|
|
|
|
|
| 25 | 25 | 25 | 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 1. 系统分析
|
|
|
|
|
|
|
|
|
|
## 1.1 问题描述
|
|
|
|
|
|
|
|
|
|
设计一个城市公路导航系统,能够计算出省内及周边任意两个城市之间的导航路径及最短距离。选择一个合适的省份,省内及周边城市数量在 100 个左右(最少不低于 80 个)。查阅相关资料获取邻近城市之间的公路里程数据,建立导航地图。任意指定两个城市作为起点和终点,系统能够计算出两个城市之间的最短距离和导航路径。
|
|
|
|
|
|
|
|
|
|
(1)基于真实的公路地图数据建立导航地图模型,编制成格式简单的数据文件,包括城市名称,以及邻近城市之间的公路里程数。
|
|
|
|
|
|
|
|
|
|
(2)系统能够读取导航地图数据文件,建立地图模型,也能够将模型输出成地图数据文件,以便验证模型的正确性。
|
|
|
|
|
|
|
|
|
|
(3)通过人机交互的方式输入起点和终点城市名称,系统给出最短路径和导航路径上途径的城市名称。
|
|
|
|
|
|
|
|
|
|
(4)能够读取不同的导航地图进行功能测试。
|
|
|
|
|
|
|
|
|
|
要求系统运行正常、功能完整;数据结构使用得当,算法有较高的效率;代码规范、可读性高,结构清晰;具备一定的健壮性、可靠性和可维护性。
|
|
|
|
|
## 1.2 可行性分析
|
|
|
|
|
|
|
|
|
|
地图可以用图结构建立模型,每个城市作为图中的一个顶点,城市之间的公路对应图中的边。给定起点和终点的条件下,可以利用最短路径算法求得导航路径。
|
|
|
|
|
|
|
|
|
|
真实的公路地图数据需要经过预先处理,编辑并保存成便于程序读取和处理的格式。在数据量比较大的情况下,要根据数据的特点采用合适的数据结构。
|
|
|
|
|
|
|
|
|
|
除了基于真实数据的测试,还可以采用小规模的模拟数据进行测试,以便验证算法的正确性。
|
|
|
|
|
|
|
|
|
|
明确解决问题的关键,核心数据结构,核心算法等。
|
|
|
|
|
|
|
|
|
|
确定解决问题的总体思路和方案。
|
|
|
|
|
|
|
|
|
|
## 1.3 需求分析
|
|
|
|
|
|
|
|
|
|
### (1)输入和输出
|
|
|
|
|
|
|
|
|
|
确定系统的主要输入和输出,如可以设定的参数,数据文件等,明确其主要作用。
|
|
|
|
|
|
|
|
|
|
### (2)数据字典
|
|
|
|
|
|
|
|
|
|
地点 = 城市名 + 编号 + 地点介绍 + 弧边
|
|
|
|
|
|
|
|
|
|
### (3)数据文件
|
|
|
|
|
|
|
|
|
|
系统中需要读取xx数据文件以获取xx数据,或者需要导出xx数据。举例说明xx数据文件的具体格式。
|
|
|
|
|
|
|
|
|
|
### (4)参数设定
|
|
|
|
|
|
|
|
|
|
系统开始运行时,需要设置的参数。可以用户手册的形式给出设定参数的过程,如系统提示信息和用户输入等。
|
|
|
|
|
|
|
|
|
|
### (5)XX功能
|
|
|
|
|
|
|
|
|
|
其他具体功能。
|
|
|
|
|
|
|
|
|
|
首先简要说明该功能的主要作用,可以用户手册的形式给出系统提示信息、用户输入和系统输出等。
|
|
|
|
|
|
|
|
|
|
### (6)XX功能
|
|
|
|
|
|
|
|
|
|
其他功能逐项列出。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 2. 系统设计
|
|
|
|
|
|
|
|
|
|
## 2.1 概要设计
|
|
|
|
|
|
|
|
|
|
系统划分为几个模块,可以画模块图。
|
|
|
|
|
|
|
|
|
|
逐个说明每个模块的功能(输入、输出、做什么,这里不写怎么做)。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 2.2 数据结构设计
|
|
|
|
|
|
|
|
|
|
首先,分析对比几种可选的数据结构设计方案。如图可以采用邻接矩阵,也可以采用邻接表,表示集合可以用普通的查找表,还可以用不相交集。给出每一种设计方案的特点(优势、不足等)。然后,综合考虑各种因素(空间、时间、乃至团队成员的水平等),给出你的选择。
|
|
|
|
|
|
|
|
|
|
### (1)xxx结构
|
|
|
|
|
|
|
|
|
|
给出核心数据结构的设计,包括文字描述和示意图。讲清楚数据是如何组织的。多个数据结构,逐一列出。
|
|
|
|
|
|
|
|
|
|
### (2)xxx结构
|
|
|
|
|
|
|
|
|
|
给出核心数据结构的设计,包括文字描述和示意图。讲清楚数据是如何组织的。
|
|
|
|
|
|
|
|
|
|
###
|
|
|
|
|
|
|
|
|
|
## 2.3 算法设计
|
|
|
|
|
|
|
|
|
|
首先,分析对比几种可选的算法设计方案。如是否排序,广度优先或深度优先搜索等。给出每一种设计方案的特点(优势、不足)。然后,综合考虑各种因素(空间、时间、乃至团队成员的水平等),给出你的选择。
|
|
|
|
|
|
|
|
|
|
### (1)XXX算法
|
|
|
|
|
|
|
|
|
|
给出核心算法的设计,包括伪代码或流程图。多个核心算法,逐一列出。只列举解决问题的核心算法,重点讲清楚是如何解决问题的。
|
|
|
|
|
|
|
|
|
|
### (2)XXX算法
|
|
|
|
|
|
|
|
|
|
给出核心算法的设计,包括伪代码或流程图。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 3. 系统实现
|
|
|
|
|
|
|
|
|
|
本次使用的程序语言为C++,开发工具为VScode。
|
|
|
|
|
|
|
|
|
|
介绍项目的文件结构,以及主要函数的功能。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 3.1 核心数据结构的实现
|
|
|
|
|
|
|
|
|
|
```cpp
|
|
|
|
|
typedef struct
|
|
|
|
|
{
|
|
|
|
|
int length;//边的长度,既两个地点之的长
|
|
|
|
|
int money;
|
|
|
|
|
}ArcCell; //定义边的类型
|
|
|
|
|
|
|
|
|
|
typedef struct
|
|
|
|
|
{ int no; //顶点的编号
|
|
|
|
|
char sight[10]; //地点
|
|
|
|
|
char introduction[100]; //地点的介绍
|
|
|
|
|
}VertexType; //定义顶点的类型
|
|
|
|
|
|
|
|
|
|
typedef struct
|
|
|
|
|
{
|
|
|
|
|
int vexnum; //顶点数
|
|
|
|
|
int arcnum; //边数
|
|
|
|
|
VertexType vexs[NO]; //在图结构体中调用点的结构体
|
|
|
|
|
ArcCell arc[NO][NO]; //在图结构体中调用边的结构体
|
|
|
|
|
}MatGrath;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
对该数据结构的特点进行分析。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 3.2 核心算法的实现
|
|
|
|
|
|
|
|
|
|
```cpp
|
|
|
|
|
|
|
|
|
|
//Dijkstra算法
|
|
|
|
|
void Ppath(MatGrath &G,int path[],int w,int v) //前向递归查找路径上的顶点
|
|
|
|
|
{
|
|
|
|
|
int k;
|
|
|
|
|
k=path[w];
|
|
|
|
|
if (k==v) return; //找到了起点则返回
|
|
|
|
|
Ppath(G,path,k,v); //找顶点k的前一个顶点
|
|
|
|
|
printf("%s->",G.vexs[k].sight); //输出顶点k
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int ShortestPath(MatGrath &G,int v,int w)//求两点之间的最短路径
|
|
|
|
|
{
|
|
|
|
|
int dist[MAXV],path[MAXV];
|
|
|
|
|
int s[MAXV];
|
|
|
|
|
int mindis,i,j,u;
|
|
|
|
|
for (i=0; i<G.vexnum; i++)
|
|
|
|
|
{
|
|
|
|
|
dist[i]=G.arc[v][i].length; //距离初始化
|
|
|
|
|
s[i]=0; //s[]置空
|
|
|
|
|
if (G.arc[v][i].length<INF) //路径初始化
|
|
|
|
|
path[i]=v; //v到i有边
|
|
|
|
|
else
|
|
|
|
|
path[i]=-1; //v到i没有边,置顶点i的前一个顶点为-1
|
|
|
|
|
}
|
|
|
|
|
s[v]=1;
|
|
|
|
|
path[v]=0; //源点编号v放入s中
|
|
|
|
|
for (i=0; i<G.vexnum; i++) //循环直到所有顶点的最短路径都求出
|
|
|
|
|
{
|
|
|
|
|
mindis=INF; //mindis置最小长度初值
|
|
|
|
|
for (j=0; j<G.vexnum; j++) //选取不在s中且具有最小距离的顶点u
|
|
|
|
|
if (s[j]==0 && dist[j]<mindis)
|
|
|
|
|
{
|
|
|
|
|
u=j;
|
|
|
|
|
mindis=dist[j];
|
|
|
|
|
}
|
|
|
|
|
s[u]=1; //顶点u加入s中
|
|
|
|
|
for (j=0; j<G.vexnum; j++) //修改不在s中的顶点的距离
|
|
|
|
|
if (s[j]==0)
|
|
|
|
|
if (G.arc[u][j].length<INF && dist[u]+G.arc[u][j].length<dist[j])
|
|
|
|
|
{
|
|
|
|
|
dist[j]=dist[u]+G.arc[u][j].length;
|
|
|
|
|
path[j]=u;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (s[w]==1)
|
|
|
|
|
{
|
|
|
|
|
printf(" 从%s到%s的最短路径长度为:%d米\t路径为:",G.vexs[v].sight,G.vexs[w].sight,dist[w]);
|
|
|
|
|
printf("%s->",G.vexs[v].sight); //输出路径上的起点
|
|
|
|
|
Ppath(G,path,w,v); //输出路径上的中间点
|
|
|
|
|
printf("%s\n",G.vexs[w].sight); //输出路径上的终点
|
|
|
|
|
}
|
|
|
|
|
if(s[w]==0)
|
|
|
|
|
printf("从%d到%d不存在路径\n",v,w);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
对该算法的时间和空间复杂度进行分析。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 4. 系统测试
|
|
|
|
|
|
|
|
|
|
描述测试的思路和方法。比如,先用小数据量进行测试,再用真实数据进行测试。
|
|
|
|
|
|
|
|
|
|
测试应考虑到输入数据的特殊情况。
|
|
|
|
|
|
|
|
|
|
给出若干测试用例,包括输入、预期结果、运行结果或是否通过测试。运行结果和预期结果一致,为通过测试。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 5. 总结
|
|
|
|
|
|
|
|
|
|
概况项目和完成情况。
|
|
|
|
|
|
|
|
|
|
遇到的问题和解决方法。
|
|
|
|
|
|
|
|
|
|
个人小结:
|
|
|
|
|
|
|
|
|
|
杨腾泽:通过这次数据结构课程设计,我对《数据结构》这门课程有了更深一步的了解,使我对《数据结构》这门课程掌握以及运用更加灵活·同时也让我发现了自已在这门课上的不足与缺陷,同时也明确了自己在以后的类似课程中的具体学习方法。
|
|
|
|
|
这次在应用中,我发现了自己的很多不足,在编写城市公路导航系统的过程中,自己C语言方面的只是掌握太少,很多功能需求只能退而求其次,一次又一 次的更改,一次又一次的失败,也终于是在最后也完成了自己的要求,同时我也 知道了平时用功学习的重要性。尤其是在日常学习之中,对于单一的只是点也许 掌握的还不错,但是自己动手太少,实践经验严重不足,且面临课程设计之时,要求多方面的只是结和编码,对于我而言还是有很大的难度的。 如此次对于邻接 矩阵的存储于读取,以及最短路算法的实现,两个及其重要的算法,狄克斯特算法和佛洛依德算法,在具体的应用上还是有很多不足
|
|
|
|
|
|
|
|
|
|
刘鑫成:
|
|
|
|
|
|
|
|
|
|
李培毅:
|
|
|
|
|
|
|
|
|
|
孙英皓:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 参考文献
|
|
|
|
|
|
|
|
|
|
[1] 严蔚敏, 吴伟民. 数据结构(C语言版). 北京: 清华大学出版社, 2007.
|
|
|
|
|
[山东省国道里程表](http://www.onegreen.net/maps/HTML/50213.html)
|