刘鑫成
56e1334dd0
|
1 year ago | |
---|---|---|
.vscode | 1 year ago | |
code | 1 year ago | |
.gitignore | 1 year ago | |
LICENSE | 1 year ago | |
README.md | 1 year ago |
README.md
UrbanHighwayNavigationSystem
项目名称 城市公路导航系统
杨腾泽,刘鑫成,李培毅,孙英皓
摘要: (1) 基于真实的公路数据建立导航地图模型,编制成格式简单的数据文件包括城市线路名称、站点名称。 (2)系统能够读取公路导航地图数据文件,建立公路模型,也能够将模型输出成数据文件,以便验证模型的正确性。 (3)通过人机交互的方式输入起点和终点站名称,系统给出路径长度最短的导航路径。 (4)能够读取不同的地铁导航地图进行功能测试。
1. 系统分析
通过各种算法,实现公路导航
1.1 问题描述
交通网络中常常提出这样的问题:从甲地到乙地之间是否有公路连通?在有多条通路的情况下,哪一条路最短?导航系统便可以解决这样的问题。与此同时,城市的扩建,新地点的添加,新道路的修建,需要导航系统具备添加新地点,添加新路线的功能。而受一些生态工程的实施,例如退耕还林还草,和自然条件的影响,本来存在的一些地点或道路需要删除或更改,此时导航图还应该及时的更新,以适应新的查找两点间最短路径的需要。 除此之外,用户的查找应是极为方便的,对于最短路线, 新添加的地点和路径以及删除的地点和路径的感知应是直观的,这样才能真正的给使用导航系统的人们提供方便。
1.2 可行性分析
明确解决问题的关键:最关路径算法。 核心数据结构:图。 核心算法:Dijkstra
确定解决问题的总体思路和方案:使用dijkxtra最短路径进行计算。
1.3 需求分析
(1)输入和输出
输入城市编号,即可显示该城市的具体信息,最短路径等。 功能:查找某一个城市的信息 输入:城市的编号 输出:城市的编号,名称以及简介
(2)数据字典
城市 = 城市编号 + 城市名称 + 城市介绍
(3)数据文件
系统中需要读取以下文件以获得城市的边信息数据
creat.cpp
功能:创建图结构
输入:给图中的点赋予该点的编号,名称以及简介
输出:无
function.cpp
功能:连接任意两个点
输入:两个点的编号
输出:无
menu.cpp
功能:输出所有的功能目录
输入:选择的功能编号
输出:返回一个值给main函数
short.cpp
功能:用Dijkstra算法求给出的一点到其余个点的最短路径 输入:源点 输出:地点的最短路程以及路径
功能:用floyd算法求给出的两点之间的最好费用 输入:出发地,目的地 输出:地点的最少费用以及路径
(4)参数设定
构建图结构给图中点位赋予编号,名称,简介
(5)地图信息修改功能
输入修改编号,即可对指定城市进行修改
功能:修改城市信息
输入:要修改的城市编号,以及修改后的城市信息
输出:无
2. 系统设计
2.1 概要设计
系统划分为几个模块,可以画模块图。
逐个说明每个模块的功能(输入、输出、做什么,这里不写怎么做)。
2.2 数据结构设计
首先,分析对比几种可选的数据结构设计方案。如图可以采用邻接矩阵,也可以采用邻接表,表示集合可以用普通的查找表,还可以用不相交集。给出每一种设计方案的特点(优势、不足等)。然后,综合考虑各种因素(空间、时间、乃至团队成员的水平等),给出你的选择。
(1)xxx结构
给出核心数据结构的设计,包括文字描述和示意图。讲清楚数据是如何组织的。多个数据结构,逐一列出。
(2)xxx结构
给出核心数据结构的设计,包括文字描述和示意图。讲清楚数据是如何组织的。
2.3 算法设计
首先,分析对比几种可选的算法设计方案。如是否排序,广度优先或深度优先搜索等。给出每一种设计方案的特点(优势、不足)。然后,综合考虑各种因素(空间、时间、乃至团队成员的水平等),给出你的选择。
(1)XXX算法
给出核心算法的设计,包括伪代码或流程图。多个核心算法,逐一列出。只列举解决问题的核心算法,重点讲清楚是如何解决问题的。
(2)XXX算法
给出核心算法的设计,包括伪代码或流程图。
3. 系统实现
采用C++、利用VSCode实现。
本程序首先是用户编辑界面,用户根据自己的需求编写地图,从而加入顶点的数组之中,创建的地图用邻接矩阵存储,在从主函数之中进行调用,实现对两个算法的调用。用户在输入顶点以及边的信息都会存储,在存储成功之后会提示用户存储成功,之后进入到菜单界面,菜单界面提供两种选择口合,分别可以调运Dijkstra和Floyd算法调用之后输入相应的口令以及要查询的城市编号, 算法会根据邻接矩阵存储的地图进行计算,求出最短路径。在以后使用完系统后,可输入口合 0,系统会结束一切运算,退出程序。
3.1 核心数据结构的实现
核心算法Dijkstra 算法floyd 项目文件结构可以设计为:
-CityRoadNav/
- CityRoadNav.vcxproj // Visual Studio项目文件
- CityRoadNav.vcxproj.filters
- CityRoadNav.slnSource Files/ // 源代码目录
- CityNetwork.cpp // 城市网络类,存储城市数据及邻接矩阵
- CityNetwork.h
- Dijkstra.cpp // Dijkstra算法类,实现最短路径搜索
- Dijkstra.h
- DynamicProgramming.cpp // 动态规划算法类,实现最优路径搜索
- DynamicProgramming.h
- main.cpp // 主程序
- ...Header Files/ // 头文件目录
- ... Resources/ // 资源文件目录
- CityInfo.txt // 城市信息及邻接矩阵
如以下代码,采用迪杰斯特拉算法实现求取路径最短值
int Ppath2(MatGrath &G,int path[],int i,int v) //前向递归查找路径上的顶点
{
int k;
k=path[i];
if (k==v)
return k; //找到了起点则返回
Ppath2(G,path,k,v); //找顶点k的前一个顶点
printf("%s->",G.vexs[k].sight);//输出顶点k
}
int danyuan(MatGrath &G,int v)//求两点之间的最短路径
{
int dist[MAXV],path[MAXV];
int s[MAXV];
int mindis,i,j,u;
for (i=1; i<=G.vexnum; i++)
{
dist[i]=G.arc[v][i].length; //距离初始化
s[i]=0; //s[]置空
if (G.arc[v][i].length<INF) //路径初始化
path[i]=v;
else
path[i]=-1;
}
s[v]=1;
path[v]=0; //源点编号v放入s中
for (i=1; i<=G.vexnum; i++) //循环直到所有顶点的最短路径都求出
{
mindis=INF; //mindis置最小长度初值
for (j=1; j<=G.vexnum; j++) //选取不在s中且具有最小距离的顶点u
if (s[j]==0 && dist[j]<mindis)
{
u=j;
mindis=dist[j];
}
s[u]=1; //顶点u加入s中
for (j=1; j<=G.vexnum; j++) //修改不在s中的顶点的距离
if (s[j]==0)
if (G.arc[u][j].length<INF && dist[u]+G.arc[u][j].length<dist[j])
{
dist[j]=dist[u]+G.arc[u][j].length;
path[j]=u;
}
}
for(i=1; i<=G.vexnum; i++)
if (s[i]==1&&v!=i)
{
printf(" 从%s到%s的最短路径长度为:%d米\t路径为:",G.vexs[v].sight,G.vexs[i].sight,dist[i]);
printf("%s->",G.vexs[v].sight); //输出路径上的起点
Ppath2(G,path,i,v); //输出路径上的中间点
printf("%s\n",G.vexs[i].sight); //输出路径上的终点
}
}
int Ppath1(MatGrath &G,int path[][MAXV],int v,int w) //前向递归查找路径上的顶点
{
int k;
k=path[v][w];
if (k==-1) return 0; //找到了起点则返回
Ppath1(G,path,v,k); //找顶点i的前一个顶点k
printf("%s->",G.vexs[k].sight);
Ppath1(G,path,k,w); //找顶点k的前一个顶点j
}
如下采用floyd算法求给出的两点之间的最少费用
void ShortestMoney(MatGrath &G,int v,int w)//求花费最少的路径
{
int A[MAXV][MAXV],path[MAXV][MAXV];
int i,j,k;
for (i=0; i<G.vexnum; i++)
for (j=0; j<G.vexnum; j++)
{
A[i][j]=G.arc[i][j].money;
path[i][j]=-1; //i到j没有边
}
for (k=0; k<G.vexnum; k++)
{
for (i=0; i<G.vexnum; i++)
for (j=0; j<G.vexnum; j++)
if (A[i][j]>A[i][k]+A[k][j])
{
A[i][j]=A[i][k]+A[k][j];
path[i][j]=k;
}
}
if (A[v][w]==INF)
{
if (v!=w)
printf("从%d到%d没有路径\n",v,w);
}
else
{
printf(" 从%s到%s路径费用:%d元人民币 路径:",G.vexs[v].sight,G.vexs[w].sight,A[v][w]);
printf("%s->",G.vexs[v].sight); //输出路径上的起点
Ppath1(G,path,v,w); //输出路径上的中间点
printf("%s\n",G.vexs[w].sight); //输出路径上的终点
}
}
3.2 核心算法的实现
主函数可以分为以下几个模块:
- 数据读取模块:读取CityInfo.txt文件,构建城市网络,存储在邻接矩阵中。
- 用户交互模块:提供用户交互界面,获取用户位置信息及路径查询请求。
- 位置确定模块:通过城市名称获取城市在邻接矩阵中的位置序号,以供路径查询使用。
- 路径查询模块:选择Dijkstra算法或动态规划算法计算路径,并返回路径信息。
- 路径显示模块:将计算得到的路径用可视化方式显示给用户。
核心算法Dijkstra 算法floyd
如以下代码,采用迪杰斯特拉算法实现求取路径最短值
int Ppath2(MatGrath &G,int path[],int i,int v) //前向递归查找路径上的顶点
{
int k;
k=path[i];
if (k==v)
return k; //找到了起点则返回
Ppath2(G,path,k,v); //找顶点k的前一个顶点
printf("%s->",G.vexs[k].sight);//输出顶点k
}
int danyuan(MatGrath &G,int v)//求两点之间的最短路径
{
int dist[MAXV],path[MAXV];
int s[MAXV];
int mindis,i,j,u;
for (i=1; i<=G.vexnum; i++)
{
dist[i]=G.arc[v][i].length; //距离初始化
s[i]=0; //s[]置空
if (G.arc[v][i].length<INF) //路径初始化
path[i]=v;
else
path[i]=-1;
}
s[v]=1;
path[v]=0; //源点编号v放入s中
for (i=1; i<=G.vexnum; i++) //循环直到所有顶点的最短路径都求出
{
mindis=INF; //mindis置最小长度初值
for (j=1; j<=G.vexnum; j++) //选取不在s中且具有最小距离的顶点u
if (s[j]==0 && dist[j]<mindis)
{
u=j;
mindis=dist[j];
}
s[u]=1; //顶点u加入s中
for (j=1; j<=G.vexnum; j++) //修改不在s中的顶点的距离
if (s[j]==0)
if (G.arc[u][j].length<INF && dist[u]+G.arc[u][j].length<dist[j])
{
dist[j]=dist[u]+G.arc[u][j].length;
path[j]=u;
}
}
for(i=1; i<=G.vexnum; i++)
if (s[i]==1&&v!=i)
{
printf(" 从%s到%s的最短路径长度为:%d米\t路径为:",G.vexs[v].sight,G.vexs[i].sight,dist[i]);
printf("%s->",G.vexs[v].sight); //输出路径上的起点
Ppath2(G,path,i,v); //输出路径上的中间点
printf("%s\n",G.vexs[i].sight); //输出路径上的终点
}
}
int Ppath1(MatGrath &G,int path[][MAXV],int v,int w) //前向递归查找路径上的顶点
{
int k;
k=path[v][w];
if (k==-1) return 0; //找到了起点则返回
Ppath1(G,path,v,k); //找顶点i的前一个顶点k
printf("%s->",G.vexs[k].sight);
Ppath1(G,path,k,w); //找顶点k的前一个顶点j
}
如下采用floyd算法求给出的两点之间的最少费用
void ShortestMoney(MatGrath &G,int v,int w)//求花费最少的路径
{
int A[MAXV][MAXV],path[MAXV][MAXV];
int i,j,k;
for (i=0; i<G.vexnum; i++)
for (j=0; j<G.vexnum; j++)
{
A[i][j]=G.arc[i][j].money;
path[i][j]=-1; //i到j没有边
}
for (k=0; k<G.vexnum; k++)
{
for (i=0; i<G.vexnum; i++)
for (j=0; j<G.vexnum; j++)
if (A[i][j]>A[i][k]+A[k][j])
{
A[i][j]=A[i][k]+A[k][j];
path[i][j]=k;
}
}
if (A[v][w]==INF)
{
if (v!=w)
printf("从%d到%d没有路径\n",v,w);
}
else
{
printf(" 从%s到%s路径费用:%d元人民币 路径:",G.vexs[v].sight,G.vexs[w].sight,A[v][w]);
printf("%s->",G.vexs[v].sight); //输出路径上的起点
Ppath1(G,path,v,w); //输出路径上的中间点
printf("%s\n",G.vexs[w].sight); //输出路径上的终点
}
}
4. 系统测试
描述测试的思路和方法。比如,先用小数据量进行测试,再用真实数据进行测试。
测试应考虑到输入数据的特殊情况。
给出若干测试用例,包括输入、预期结果、运行结果或是否通过测试。运行结果和预期结果一致,为通过测试。
5. 总结
概况项目和完成情况。
遇到的问题和解决方法。
个人小结:
杨腾泽:
刘鑫成:本次的系统研发研活动,让我体验到了程序开发的复杂性与程序开发成功的自豪感,一个项目的完成离不开一个团队的团结协作,在进行项目时,需要对其进行反复的纠错和改进,在更改和发现中不断地改进和提升自,从而丰富自己。这次团队体验,让我能够初步地体会到一个团队间的分工协作的重要性,成员分工以及项目领导者的重要性,让我受益匪浅
李培毅:
孙英皓:
参考文献
列出参考的文献资料,根据情况自行添加。
[1] 严蔚敏, 吴伟民. 数据结构(C语言版). 北京: 清华大学出版社, 2007.