diff --git a/编写小组/试卷/2018-19线性代数期末考试卷.md b/编写小组/试卷/2018-19线性代数期末考试卷.md index 5030791..30fc61c 100644 --- a/编写小组/试卷/2018-19线性代数期末考试卷.md +++ b/编写小组/试卷/2018-19线性代数期末考试卷.md @@ -64,4 +64,60 @@ (C) $a = 2, b = 0, c = 1$; (D) $a = 2, b = 1, c = 2$. + +7. 已知向量 $\alpha_1 = (1,0,-1,0)^T$,$\alpha_2 = (1,1,-1,-1)^T$,$\alpha_3 = (-1,0,1,1)^T$,则向量 $\alpha_1 + 2\alpha_2$ 与 $2\alpha_1 + \alpha_3$ 的内积 + $$ + \langle \alpha_1 + 2\alpha_2,\, 2\alpha_1 + \alpha_3 \rangle = \underline{\qquad\qquad}. + $$ + +8. 设二阶矩阵 $A$ 有两个相异特征值,$\alpha_1, \alpha_2$ 是 $A$ 的线性无关的特征向量,且 $A^2 (\alpha_1 + \alpha_2) = \alpha_1 + \alpha_2$,则 + $$ + |A| = \underline{\qquad\qquad}. + $$ + +9. 若向量组 + $$ + \alpha_1 = (1,0,1)^T,\quad \alpha_2 = (0,1,1)^T,\quad \alpha_3 = (1,3,5)^T + $$ + 不能由向量组 + $$ + \beta_1 = (1,1,1)^T,\quad \beta_2 = (1,2,3)^T,\quad \beta_3 = (3,4,a)^T + $$ + 线性表示,则 + $$ + a = \underline{\qquad\qquad}. + $$ + +10. 设矩阵 + $$ + A = \begin{bmatrix} + 1 & a_1 & a_1^2 & a_1^3 \\ + 1 & a_2 & a_2^2 & a_2^3 \\ + 1 & a_3 & a_3^2 & a_3^3 \\ + 1 & a_4 & a_4^2 & a_4^3 + \end{bmatrix},\quad + x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix},\quad + b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, + $$ + 其中常数 $a_1, a_2, a_3, a_4$ 互不相等,则线性方程组 $Ax = b$ 的解为 + $$ + \underline{\qquad\qquad\qquad\qquad}. + $$ + +11. 若 $n$ 阶实对称矩阵 $A$ 的特征值为 + $$ + \lambda_i = (-1)^i \quad (i=1,2,\dots,n), + $$ + 则 + $$ + A^{100} = \underline{\qquad\qquad\qquad\qquad}. + $$ + +12. 设 $n$ 阶矩阵 $A = [a_{ij}]_{n \times n}$,则二次型 + $f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n (a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n)^2$ + 的矩阵为 + $$ + \underline{\qquad\qquad\qquad\qquad}. + $$ + --- \ No newline at end of file