diff --git a/编写小组/试卷/1231线性代数考试卷.md b/编写小组/试卷/1231线性代数考试卷(解析版).md similarity index 99% rename from 编写小组/试卷/1231线性代数考试卷.md rename to 编写小组/试卷/1231线性代数考试卷(解析版).md index e2eb5ce..66b54ff 100644 --- a/编写小组/试卷/1231线性代数考试卷.md +++ b/编写小组/试卷/1231线性代数考试卷(解析版).md @@ -124,7 +124,7 @@ $\quad T^{-1} = \begin{pmatrix} 1 & 0 \\ -5 & 1 \end{pmatrix}$是坐标变换矩 8. 设2阶矩阵A=$\begin{bmatrix}3&-1\\-9&3\end{bmatrix}$,n为正整数,则$A^n=\underline{\quad\quad}$。 - +--- 解析: 先计算$A^2$: @@ -143,7 +143,7 @@ $$= 6\begin{bmatrix}3&-1\\-9&3\end{bmatrix} = 6A$$ 将A代入得: $$A^n = 6^{n-1}\begin{bmatrix}3&-1\\-9&3\end{bmatrix} $$ - + --- 9. 若向量组