From 57dab8600aae0f122911e28613e8fc660320086c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E7=8E=8B=E8=BD=B2=E6=A5=A0?= Date: Sat, 27 Dec 2025 08:30:03 +0800 Subject: [PATCH] vault backup: 2025-12-27 08:30:03 --- .../试卷/期中考前押题卷解析版.md | 24 +++++++------------ 1 file changed, 9 insertions(+), 15 deletions(-) diff --git a/编写小组/试卷/期中考前押题卷解析版.md b/编写小组/试卷/期中考前押题卷解析版.md index ea19c16..dc622a1 100644 --- a/编写小组/试卷/期中考前押题卷解析版.md +++ b/编写小组/试卷/期中考前押题卷解析版.md @@ -130,22 +130,16 @@ F $\sum_{n=1}^{\infty} \frac{\sqrt{n+\sqrt{n}}}{n^2+1}$ 6.计算 $\lim\limits_{x \to \infty} \left( \tan^2 \frac{2}{x} + \cos \frac{1}{x} \right)^{x^2}$。 -**解析:** -这是 $1^\infty$ 型极限,令 $t = \frac{1}{x}$,则当 $x \to \infty$ 时 $t \to 0^+$,原极限化为: -$$\lim\limits_{t \to 0^+} \left( \tan^2 (2t) + \cos t \right)^{\frac{1}{t^2}}.$$ -利用等价无穷小和泰勒展开: - -- $\tan(2t) \sim 2t$,所以 $\tan^2(2t) \sim 4t^2$; - -- $\cos t = 1 - \frac{t^2}{2} + o(t^2)$。 - 因此: - $$\tan^2(2t) + \cos t = 4t^2 + 1 - \frac{t^2}{2} + o(t^2) = 1 + \frac{7}{2}t^2 + o(t^2).$$ - 取对数: - $$\ln \left[ \left( 1 + \frac{7}{2}t^2 + o(t^2) \right)^{\frac{1}{t^2}} \right] = \frac{1}{t^2} \ln \left( 1 + \frac{7}{2}t^2 + o(t^2) \right) = \frac{1}{t^2} \left( \frac{7}{2}t^2 + o(t^2) \right) = \frac{7}{2} + o(1).$$ - 所以原极限为 $e^{7/2}$。 - +**解析:** $$\begin{aligned} +\lim\limits_{x \to \infty} \left( \tan^2 \frac{2}{x} + \cos \frac{1}{x} \right)^{x^2} +&=\lim\limits_{x\to\infty}(1+\tan^2\frac{2}{x}+\cos \frac{1}{x}-1)^{\frac{1}{\tan^2\frac{2}{x}+\cos \frac{1}{x}-1}\cdot x^2\cdot(\tan^2\frac{2}{x}+\cos \frac{1}{x}-1)} +\\&=e^{\lim\limits_{x\to\infty}\frac{\tan^2\frac{2}{x}+\cos \frac{1}{x}-1}{\frac{1}{x^2}}} +\\&\overset{t=\frac{1}{x}}{=}e^{\lim\limits_{t\to0}\frac{\tan^2(2t)+\cos t-1}{t^2}} +\\&=e^{\lim\limits_{t\to0}\frac{4t^2}{t^2}-\frac{\frac{1}{2}t^2}{t^2}}(四则运算和等价无穷小) +\\&=e^{\frac{7}{2}} +\end{aligned}$$ -**答案:** $e^{7/2}$ +**答案:** $e^{\frac{7}{2}}$ ---