From d8ebdb28e73cc2bbf9843442090731a9656880c8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E9=83=91=E5=93=B2=E8=88=AA?= Date: Mon, 29 Dec 2025 23:15:33 +0800 Subject: [PATCH] =?UTF-8?q?=E4=BF=AE=E6=94=B9=E4=BA=86=E6=96=87=E4=BB=B6?= =?UTF-8?q?=EF=BC=9A?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- ...231线性代数考试卷(解析版).md | 101 ++++++++++++++++++ 1 file changed, 101 insertions(+) diff --git a/编写小组/试卷/1231线性代数考试卷(解析版).md b/编写小组/试卷/1231线性代数考试卷(解析版).md index e476d63..677326c 100644 --- a/编写小组/试卷/1231线性代数考试卷(解析版).md +++ b/编写小组/试卷/1231线性代数考试卷(解析版).md @@ -280,8 +280,109 @@ D_n = (-1)^{n-1} \cdot 2^{n-2} \cdot (n+1) $$ --- +(2)加边 +$$ +\tilde{D} = +\begin{vmatrix} +1 & 0 & 0 & \cdots & 0 \\ +1 & 1 + x_1 & 1 + x_1^2 & \cdots & 1 + x_1^n \\ +1 & 1 + x_2 & 1 + x_2^2 & \cdots & 1 + x_2^n \\ +\vdots & \vdots & \vdots & \ddots & \vdots \\ +1 & 1 + x_n & 1 + x_n^2 & \cdots & 1 + x_n^n +\end{vmatrix} + +$$ + +$$ +\tilde{D} = +\begin{vmatrix} +1 & -1 & -1 & \cdots & -1 \\ +1 & x_1 & x_1^2 & \cdots & x_1^n \\ +1 & x_2 & x_2^2 & \cdots & x_2^n \\ +\vdots & \vdots & \vdots & \ddots & \vdots \\ +1 & x_n & x_n^2 & \cdots & x_n^n +\end{vmatrix} +$$ + +将第一行拆为 $(2,0,0,\dots,0)$ 与 $(-1,-1,\dots,-1)$ 之和: + +$$ +\tilde{D} = +\begin{vmatrix} +2 & 0 & 0 & \cdots & 0 \\ +1 & x_1 & x_1^2 & \cdots & x_1^n \\ +1 & x_2 & x_2^2 & \cdots & x_2^n \\ +\vdots & \vdots & \vdots & \ddots & \vdots \\ +1 & x_n & x_n^2 & \cdots & x_n^n +\end{vmatrix} ++ +\begin{vmatrix} +-1 & -1 & -1 & \cdots & -1 \\ +1 & x_1 & x_1^2 & \cdots & x_1^n \\ +1 & x_2 & x_2^2 & \cdots & x_2^n \\ +\vdots & \vdots & \vdots & \ddots & \vdots \\ +1 & x_n & x_n^2 & \cdots & x_n^n +\end{vmatrix} +$$ + +令左边为 $A$,右边为 $B$。 + +计算 $A$,按第一行展开: + +$$ +A = 2 \cdot +\begin{vmatrix} +x_1 & x_1^2 & \cdots & x_1^n \\ +x_2 & x_2^2 & \cdots & x_2^n \\ +\vdots & \vdots & \ddots & \vdots \\ +x_n & x_n^2 & \cdots & x_n^n +\end{vmatrix} += 2 \cdot \left( \prod_{i=1}^{n} x_i \right) \cdot +\begin{vmatrix} +1 & x_1 & \cdots & x_1^{n-1} \\ +1 & x_2 & \cdots & x_2^{n-1} \\ +\vdots & \vdots & \ddots & \vdots \\ +1 & x_n & \cdots & x_n^{n-1} +\end{vmatrix} +$$ + +右边为范德蒙德行列式: + +$$ +A = 2 \prod_{i=1}^{n} x_i \cdot \prod_{1 \leq i < j \leq n} (x_j - x_i) +$$ + +计算 $B$,提出第一行的因子 $-1$: + +$$ +B = (-1) \cdot +\begin{vmatrix} +1 & 1 & 1 & \cdots & 1 \\ +1 & x_1 & x_1^2 & \cdots & x_1^n \\ +1 & x_2 & x_2^2 & \cdots & x_2^n \\ +\vdots & \vdots & \vdots & \ddots & \vdots \\ +1 & x_n & x_n^2 & \cdots & x_n^n +\end{vmatrix} +$$ + +该行列式为 $n+1$ 阶范德蒙德行列式,变量为 $1, x_1, x_2, \dots, x_n$: + +$$ +B = (-1) \cdot \prod_{i=1}^{n} (x_i - 1) \cdot \prod_{1 \leq i < j \leq n} (x_j - x_i) +$$ + +因此: + +$$ +\tilde{D} = A + B = \left( 2 \prod_{i=1}^{n} x_i - \prod_{i=1}^{n} (x_i - 1) \right) \cdot \prod_{1 \leq i < j \leq n} (x_j - x_i) +$$ + +$$ +\boxed{\tilde{D} = \left(2\prod\limits_{i=1}^{n}x_i - \prod\limits_{i=1}^{n}(x_i-1)\right) \prod\limits_{1\leq i