From fb32fd9e2f07fe98420c4e61e28267aa620c4ab7 Mon Sep 17 00:00:00 2001 From: Elwood <3286545699@qq.com> Date: Mon, 29 Dec 2025 21:43:28 +0800 Subject: [PATCH] vault backup: 2025-12-29 21:43:28 --- ...231线性代数考试卷(解析版).md | 84 +------------------ 1 file changed, 1 insertion(+), 83 deletions(-) diff --git a/编写小组/试卷/1231线性代数考试卷(解析版).md b/编写小组/试卷/1231线性代数考试卷(解析版).md index 9f5cde8..4cc5a95 100644 --- a/编写小组/试卷/1231线性代数考试卷(解析版).md +++ b/编写小组/试卷/1231线性代数考试卷(解析版).md @@ -202,7 +202,7 @@ k= \underline{\qquad\qquad\qquad\qquad}. --- -12. (20 分)计算 下面的两个$n$阶行列式 +13. (20 分)计算 下面的两个$n$阶行列式 $$ K_n = \begin{vmatrix} @@ -281,89 +281,7 @@ D_n = (-1)^{n-1} \cdot 2^{n-2} \cdot (n+1) $$ --- -$$ -A = (\alpha_1, \alpha_2, \alpha_3) = -\begin{bmatrix} -1 & 2 & 1 \\ -0 & 1 & 1 \\ --1 & 1 & 1 -\end{bmatrix}, -$$ - -$$ -B = (\beta_1, \beta_2, \beta_3) = -\begin{bmatrix} -0 & -1 & 0 \\ -1 & 1 & 2 \\ -1 & 0 & 1 -\end{bmatrix}. -$$ - -设 $u$ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标为 $x = (1, 2, -3)^T$,在基 $\beta_1, \beta_2, \beta_3$ 下的坐标为 $y$,则 - -$$ -u = (\alpha_1, \alpha_2, \alpha_3) x = (\beta_1, \beta_2, \beta_3) y, -$$ - -即 - -$$ -Ax = By. -$$ - -因为 $B$ 可逆,所以 - -$$ -y = B^{-1} A x. -$$ - -用增广矩阵求解 $y$: - -$$ -(B, Ax) = -\begin{bmatrix} -0 & -1 & 0 & \vert & 2 \\ -1 & 1 & 2 & \vert & -1 \\ -1 & 0 & 1 & \vert & -2 -\end{bmatrix} -$$ -作行初等变换: - -$$ -\begin{aligned} -&\rightarrow -\begin{bmatrix} -1 & 0 & 1 & \vert & -2 \\ -0 & 1 & 1 & \vert & 1 \\ -0 & -1 & 0 & \vert & 2 -\end{bmatrix} \\ -&\rightarrow -\begin{bmatrix} -1 & 0 & 1 & \vert & -2 \\ -0 & 1 & 1 & \vert & 1 \\ -0 & 0 & 1 & \vert & 3 -\end{bmatrix} \\ -&\rightarrow -\begin{bmatrix} -1 & 0 & 0 & \vert & -5 \\ -0 & 1 & 0 & \vert & -2 \\ -0 & 0 & 1 & \vert & 3 -\end{bmatrix}. -\end{aligned} -$$ - -因此向量 - -$$ -u = \alpha_1 + 2\alpha_2 - 3\alpha_3 -$$ - -在基 $\beta_1, \beta_2, \beta_3$ 下的坐标为 - -$$ -y = (-5, -2, 3)^T. -$$ --- 13. 设$A=\begin{bmatrix}1 & -1 & 0 & -1 \\ 1 & 1 & 0 & 3 \\ 2 & 1 & 2 & 6\end{bmatrix},B=\begin{bmatrix}1 & 0 & 1 & 2 \\ 1 & -1 & a & a-1 \\ 2 & -3 & 2 & -2\end{bmatrix}$,向量$\alpha=\begin{bmatrix}0\\2\\3\end{bmatrix},\beta=\begin{bmatrix}1\\0\\-1\end{bmatrix}$.