diff --git a/nba.py b/nba.py deleted file mode 100644 index a1476e0..0000000 --- a/nba.py +++ /dev/null @@ -1,170 +0,0 @@ -import pandas as pd -import math -import csv -import random -import numpy as np -from sklearn import linear_model -from sklearn.model_selection import cross_val_score -# 当每支队伍没有elo等级分时,赋予其基础elo等级分 -base_elo = 1600 -team_elos = {} -team_stats = {} -X = [] -y = [] -# 存放数据的目录 -folder = r'C:\Users\lenovo\Desktop\data' - -# 根据每支队伍的Miscellaneous Opponent,Team统计数据csv文件进行初始化 -def initialize_data(Mstat, Ostat, Tstat): - new_Mstat = Mstat.drop(['Rk', 'Arena'], axis=1) - new_Ostat = Ostat.drop(['Rk', 'G', 'MP'], axis=1) - new_Tstat = Tstat.drop(['Rk', 'G', 'MP'], axis=1) - - team_stats1 = pd.merge(new_Mstat, new_Ostat, how='left', on='Team') - team_stats1 = pd.merge(team_stats1, new_Tstat, how='left', on='Team') - return team_stats1.set_index('Team', inplace=False, drop=True) - -def get_elo(team): - try: - return team_elos[team] - except: - # 当最初没有elo时,给每个队伍最初赋base_elo - team_elos[team] = base_elo - return team_elos[team] - - # 计算每个球队的elo值 -def calc_elo(win_team, lose_team): - winner_rank = get_elo(win_team) - loser_rank = get_elo(lose_team) - - rank_diff = winner_rank - loser_rank - exp = (rank_diff * -1) / 400 - odds = 1 / (1 + math.pow(10, exp)) - # 根据rank级别修改K值 - if winner_rank < 2100: - k = 32 - elif winner_rank >= 2100 and winner_rank < 2400: - k = 24 - else: - k = 16 - - # 更新 rank 数值 - new_winner_rank = round(winner_rank + (k * (1 - odds))) - new_loser_rank = round(loser_rank + (k * (0 - odds))) - return new_winner_rank, new_loser_rank - -def build_dataSet(all_data): - print("Building data set..") - X = [] - skip = 0 - for index, row in all_data.iterrows(): - - Wteam = row['WTeam'] - Lteam = row['LTeam'] - - #获取最初的elo或是每个队伍最初的elo值 - team1_elo = get_elo(Wteam) - team2_elo = get_elo(Lteam) - - # 给主场比赛的队伍加上100的elo值 - if row['WLoc'] == 'H': - team1_elo += 100 - else: - team2_elo += 100 - - # 把elo当为评价每个队伍的第一个特征值 - team1_features = [team1_elo] - team2_features = [team2_elo] - - # 添加我们从basketball reference.com获得的每个队伍的统计信息 - for key, value in team_stats.loc[Wteam].iteritems(): - team1_features.append(value) - for key, value in team_stats.loc[Lteam].iteritems(): - team2_features.append(value) - - # 将两支队伍的特征值随机的分配在每场比赛数据的左右两侧 - # 并将对应的0/1赋给y值 - if random.random() > 0.5: - X.append(team1_features + team2_features) - y.append(0) - else: - X.append(team2_features + team1_features) - y.append(1) - - if skip == 0: - print('X',X) - skip = 1 - - # 根据这场比赛的数据更新队伍的elo值 - new_winner_rank, new_loser_rank = calc_elo(Wteam, Lteam) - team_elos[Wteam] = new_winner_rank - team_elos[Lteam] = new_loser_rank - - return np.nan_to_num(X), y - -if __name__ == '__main__': - - Mstat = pd.read_csv(folder + '/15-16Miscellaneous_Stat.csv') - Ostat = pd.read_csv(folder + '/15-16Opponent_Per_Game_Stat.csv') - Tstat = pd.read_csv(folder + '/15-16Team_Per_Game_Stat.csv') - - team_stats = initialize_data(Mstat, Ostat, Tstat) - - result_data = pd.read_csv(folder + '/2015-2016_result.csv') - X, y = build_dataSet(result_data) - - # 训练网络模型 - print("Fitting on %d game samples.." % len(X)) - - model = linear_model.LogisticRegression() - model.fit(X, y) - - # 利用10折交叉验证计算训练正确率 - print("Doing cross-validation..") - print(cross_val_score(model, X, y, cv = 10, scoring='accuracy', n_jobs=-1).mean()) - - - def predict_winner(team_1, team_2, model): - features = [] - - # team 1,客场队伍 - features.append(get_elo(team_1)) - for key, value in team_stats.loc[team_1].iteritems(): - features.append(value) - - # team 2,主场队伍 - features.append(get_elo(team_2) + 100) - for key, value in team_stats.loc[team_2].iteritems(): - features.append(value) - - features = np.nan_to_num(features) - return model.predict_proba([features]) - - - # 利用训练好的model在16-17年的比赛中进行预测 - - print('Predicting on new schedule..') - schedule1617 = pd.read_csv(folder + '/16-17Schedule.csv') - result = [] - for index, row in schedule1617.iterrows(): - team1 = row['Vteam'] - team2 = row['Hteam'] - pred = predict_winner(team1, team2, model) - prob = pred[0][0] - if prob > 0.5: - winner = team1 - loser = team2 - result.append([winner, loser, prob]) - else: - winner = team2 - loser = team1 - result.append([winner, loser, 1 - prob]) - - with open('16-17Result.csv', 'w') as f: - writer = csv.writer(f) - writer.writerow(['win', 'lose', 'probability']) - writer.writerows(result) - print('done.') - - pd.read_csv('16-17Result.csv', header=0) -pd.read_csv('16-17Result.csv',header=0)