From 707e868d06c2a0d4ad03390a41a28a8039f5c777 Mon Sep 17 00:00:00 2001 From: p4azsfjh3 <1172251193@qq.com> Date: Fri, 25 Nov 2022 13:29:13 +0800 Subject: [PATCH] ADD file via upload --- nba.py | 170 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 170 insertions(+) create mode 100644 nba.py diff --git a/nba.py b/nba.py new file mode 100644 index 0000000..a1476e0 --- /dev/null +++ b/nba.py @@ -0,0 +1,170 @@ +import pandas as pd +import math +import csv +import random +import numpy as np +from sklearn import linear_model +from sklearn.model_selection import cross_val_score +# 当每支队伍没有elo等级分时,赋予其基础elo等级分 +base_elo = 1600 +team_elos = {} +team_stats = {} +X = [] +y = [] +# 存放数据的目录 +folder = r'C:\Users\lenovo\Desktop\data' + +# 根据每支队伍的Miscellaneous Opponent,Team统计数据csv文件进行初始化 +def initialize_data(Mstat, Ostat, Tstat): + new_Mstat = Mstat.drop(['Rk', 'Arena'], axis=1) + new_Ostat = Ostat.drop(['Rk', 'G', 'MP'], axis=1) + new_Tstat = Tstat.drop(['Rk', 'G', 'MP'], axis=1) + + team_stats1 = pd.merge(new_Mstat, new_Ostat, how='left', on='Team') + team_stats1 = pd.merge(team_stats1, new_Tstat, how='left', on='Team') + return team_stats1.set_index('Team', inplace=False, drop=True) + +def get_elo(team): + try: + return team_elos[team] + except: + # 当最初没有elo时,给每个队伍最初赋base_elo + team_elos[team] = base_elo + return team_elos[team] + + # 计算每个球队的elo值 +def calc_elo(win_team, lose_team): + winner_rank = get_elo(win_team) + loser_rank = get_elo(lose_team) + + rank_diff = winner_rank - loser_rank + exp = (rank_diff * -1) / 400 + odds = 1 / (1 + math.pow(10, exp)) + # 根据rank级别修改K值 + if winner_rank < 2100: + k = 32 + elif winner_rank >= 2100 and winner_rank < 2400: + k = 24 + else: + k = 16 + + # 更新 rank 数值 + new_winner_rank = round(winner_rank + (k * (1 - odds))) + new_loser_rank = round(loser_rank + (k * (0 - odds))) + return new_winner_rank, new_loser_rank + +def build_dataSet(all_data): + print("Building data set..") + X = [] + skip = 0 + for index, row in all_data.iterrows(): + + Wteam = row['WTeam'] + Lteam = row['LTeam'] + + #获取最初的elo或是每个队伍最初的elo值 + team1_elo = get_elo(Wteam) + team2_elo = get_elo(Lteam) + + # 给主场比赛的队伍加上100的elo值 + if row['WLoc'] == 'H': + team1_elo += 100 + else: + team2_elo += 100 + + # 把elo当为评价每个队伍的第一个特征值 + team1_features = [team1_elo] + team2_features = [team2_elo] + + # 添加我们从basketball reference.com获得的每个队伍的统计信息 + for key, value in team_stats.loc[Wteam].iteritems(): + team1_features.append(value) + for key, value in team_stats.loc[Lteam].iteritems(): + team2_features.append(value) + + # 将两支队伍的特征值随机的分配在每场比赛数据的左右两侧 + # 并将对应的0/1赋给y值 + if random.random() > 0.5: + X.append(team1_features + team2_features) + y.append(0) + else: + X.append(team2_features + team1_features) + y.append(1) + + if skip == 0: + print('X',X) + skip = 1 + + # 根据这场比赛的数据更新队伍的elo值 + new_winner_rank, new_loser_rank = calc_elo(Wteam, Lteam) + team_elos[Wteam] = new_winner_rank + team_elos[Lteam] = new_loser_rank + + return np.nan_to_num(X), y + +if __name__ == '__main__': + + Mstat = pd.read_csv(folder + '/15-16Miscellaneous_Stat.csv') + Ostat = pd.read_csv(folder + '/15-16Opponent_Per_Game_Stat.csv') + Tstat = pd.read_csv(folder + '/15-16Team_Per_Game_Stat.csv') + + team_stats = initialize_data(Mstat, Ostat, Tstat) + + result_data = pd.read_csv(folder + '/2015-2016_result.csv') + X, y = build_dataSet(result_data) + + # 训练网络模型 + print("Fitting on %d game samples.." % len(X)) + + model = linear_model.LogisticRegression() + model.fit(X, y) + + # 利用10折交叉验证计算训练正确率 + print("Doing cross-validation..") + print(cross_val_score(model, X, y, cv = 10, scoring='accuracy', n_jobs=-1).mean()) + + + def predict_winner(team_1, team_2, model): + features = [] + + # team 1,客场队伍 + features.append(get_elo(team_1)) + for key, value in team_stats.loc[team_1].iteritems(): + features.append(value) + + # team 2,主场队伍 + features.append(get_elo(team_2) + 100) + for key, value in team_stats.loc[team_2].iteritems(): + features.append(value) + + features = np.nan_to_num(features) + return model.predict_proba([features]) + + + # 利用训练好的model在16-17年的比赛中进行预测 + + print('Predicting on new schedule..') + schedule1617 = pd.read_csv(folder + '/16-17Schedule.csv') + result = [] + for index, row in schedule1617.iterrows(): + team1 = row['Vteam'] + team2 = row['Hteam'] + pred = predict_winner(team1, team2, model) + prob = pred[0][0] + if prob > 0.5: + winner = team1 + loser = team2 + result.append([winner, loser, prob]) + else: + winner = team2 + loser = team1 + result.append([winner, loser, 1 - prob]) + + with open('16-17Result.csv', 'w') as f: + writer = csv.writer(f) + writer.writerow(['win', 'lose', 'probability']) + writer.writerows(result) + print('done.') + + pd.read_csv('16-17Result.csv', header=0) +pd.read_csv('16-17Result.csv',header=0)