import pandas as pd import math import csv import random import numpy as np from sklearn import linear_model from sklearn.model_selection import cross_val_score # 当每支队伍没有elo等级分时,赋予其基础elo等级分 base_elo = 1600 team_elos = {} team_stats = {} X = [] y = [] # 存放数据的目录 folder = r'C:\Users\lenovo\Desktop\data' # 根据每支队伍的Miscellaneous Opponent,Team统计数据csv文件进行初始化 def initialize_data(Mstat, Ostat, Tstat): new_Mstat = Mstat.drop(['Rk', 'Arena'], axis=1) new_Ostat = Ostat.drop(['Rk', 'G', 'MP'], axis=1) new_Tstat = Tstat.drop(['Rk', 'G', 'MP'], axis=1) team_stats1 = pd.merge(new_Mstat, new_Ostat, how='left', on='Team') team_stats1 = pd.merge(team_stats1, new_Tstat, how='left', on='Team') return team_stats1.set_index('Team', inplace=False, drop=True) def get_elo(team): try: return team_elos[team] except: # 当最初没有elo时,给每个队伍最初赋base_elo team_elos[team] = base_elo return team_elos[team] # 计算每个球队的elo值 def calc_elo(win_team, lose_team): winner_rank = get_elo(win_team) loser_rank = get_elo(lose_team) rank_diff = winner_rank - loser_rank exp = (rank_diff * -1) / 400 odds = 1 / (1 + math.pow(10, exp)) # 根据rank级别修改K值 if winner_rank < 2100: k = 32 elif winner_rank >= 2100 and winner_rank < 2400: k = 24 else: k = 16 # 更新 rank 数值 new_winner_rank = round(winner_rank + (k * (1 - odds))) new_loser_rank = round(loser_rank + (k * (0 - odds))) return new_winner_rank, new_loser_rank def build_dataSet(all_data): print("Building data set..") X = [] skip = 0 for index, row in all_data.iterrows(): Wteam = row['WTeam'] Lteam = row['LTeam'] #获取最初的elo或是每个队伍最初的elo值 team1_elo = get_elo(Wteam) team2_elo = get_elo(Lteam) # 给主场比赛的队伍加上100的elo值 if row['WLoc'] == 'H': team1_elo += 100 else: team2_elo += 100 # 把elo当为评价每个队伍的第一个特征值 team1_features = [team1_elo] team2_features = [team2_elo] # 添加我们从basketball reference.com获得的每个队伍的统计信息 for key, value in team_stats.loc[Wteam].iteritems(): team1_features.append(value) for key, value in team_stats.loc[Lteam].iteritems(): team2_features.append(value) # 将两支队伍的特征值随机的分配在每场比赛数据的左右两侧 # 并将对应的0/1赋给y值 if random.random() > 0.5: X.append(team1_features + team2_features) y.append(0) else: X.append(team2_features + team1_features) y.append(1) if skip == 0: print('X',X) skip = 1 # 根据这场比赛的数据更新队伍的elo值 new_winner_rank, new_loser_rank = calc_elo(Wteam, Lteam) team_elos[Wteam] = new_winner_rank team_elos[Lteam] = new_loser_rank return np.nan_to_num(X), y if __name__ == '__main__': Mstat = pd.read_csv(folder + '/15-16Miscellaneous_Stat.csv') Ostat = pd.read_csv(folder + '/15-16Opponent_Per_Game_Stat.csv') Tstat = pd.read_csv(folder + '/15-16Team_Per_Game_Stat.csv') team_stats = initialize_data(Mstat, Ostat, Tstat) result_data = pd.read_csv(folder + '/2015-2016_result.csv') X, y = build_dataSet(result_data) # 训练网络模型 print("Fitting on %d game samples.." % len(X)) model = linear_model.LogisticRegression() model.fit(X, y) # 利用10折交叉验证计算训练正确率 print("Doing cross-validation..") print(cross_val_score(model, X, y, cv = 10, scoring='accuracy', n_jobs=-1).mean()) def predict_winner(team_1, team_2, model): features = [] # team 1,客场队伍 features.append(get_elo(team_1)) for key, value in team_stats.loc[team_1].iteritems(): features.append(value) # team 2,主场队伍 features.append(get_elo(team_2) + 100) for key, value in team_stats.loc[team_2].iteritems(): features.append(value) features = np.nan_to_num(features) return model.predict_proba([features]) # 利用训练好的model在16-17年的比赛中进行预测 print('Predicting on new schedule..') schedule1617 = pd.read_csv(folder + '/16-17Schedule.csv') result = [] for index, row in schedule1617.iterrows(): team1 = row['Vteam'] team2 = row['Hteam'] pred = predict_winner(team1, team2, model) prob = pred[0][0] if prob > 0.5: winner = team1 loser = team2 result.append([winner, loser, prob]) else: winner = team2 loser = team1 result.append([winner, loser, 1 - prob]) with open('16-17Result.csv', 'w') as f: writer = csv.writer(f) writer.writerow(['win', 'lose', 'probability']) writer.writerows(result) print('done.') pd.read_csv('16-17Result.csv', header=0) pd.read_csv('16-17Result.csv',header=0)