diff --git a/mnist-master/train_convnet.py b/mnist-master/train_convnet.py new file mode 100644 index 0000000..2596a9c --- /dev/null +++ b/mnist-master/train_convnet.py @@ -0,0 +1,42 @@ +# coding: utf-8 +import sys, os +sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定 +import numpy as np +import matplotlib.pyplot as plt +from dataset.mnist import load_mnist +from simple_convnet import SimpleConvNet +from common.trainer import Trainer + +# 读入数据 +(x_train, t_train), (x_test, t_test) = load_mnist(flatten=False) + +# 处理花费时间较长的情况下减少数据 +#x_train, t_train = x_train[:5000], t_train[:5000] +#x_test, t_test = x_test[:1000], t_test[:1000] + +max_epochs = 20 + +network = SimpleConvNet(input_dim=(1,28,28), + conv_param = {'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1}, + hidden_size=100, output_size=10, weight_init_std=0.01) + +trainer = Trainer(network, x_train, t_train, x_test, t_test, + epochs=max_epochs, mini_batch_size=100, + optimizer='Adam', optimizer_param={'lr': 0.001}, + evaluate_sample_num_per_epoch=1000) +trainer.train() + +# 保存参数 +network.save_params("params.pkl") +print("Saved Network Parameters!") + +# 绘制图形 +markers = {'train': 'o', 'test': 's'} +x = np.arange(max_epochs) +plt.plot(x, trainer.train_acc_list, marker='o', label='train', markevery=2) +plt.plot(x, trainer.test_acc_list, marker='s', label='test', markevery=2) +plt.xlabel("epochs") +plt.ylabel("accuracy") +plt.ylim(0, 1.0) +plt.legend(loc='lower right') +plt.show()