diff --git a/EXP_MS/lenet.py b/EXP_MS/lenet.py new file mode 100644 index 0000000..062dba9 --- /dev/null +++ b/EXP_MS/lenet.py @@ -0,0 +1,126 @@ +import os +import argparse +import mindspore.dataset as ds +import mindspore.nn as nn +from mindspore import context, Model, load_checkpoint, load_param_into_net +from mindspore.common.initializer import Normal +from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor +import mindspore.dataset.vision.c_transforms as CV +import mindspore.dataset.transforms.c_transforms as C +from mindspore.dataset.vision import Inter +from mindspore.nn.metrics import Accuracy +from mindspore import dtype as mstype +from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits +from utils.dataset import download_dataset + +def create_dataset(data_path, batch_size=32, repeat_size=1,num_parallel_workers=1): + """ 创建用于训练或测试的数据集""" + # 定义数据集 + mnist_ds = ds.MnistDataset(data_path) + + # 定义操作参数 + resize_height, resize_width = 32, 32 + rescale = 1.0 / 255.0 + shift = 0.0 + rescale_nml = 1 / 0.3081 + shift_nml = -1 * 0.1307 / 0.3081 + + # 定义映射操作 + resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # 将图像调整为(32,32) + rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) # 对图像进行归一化、标准化操作,提升训练效率 + rescale_op = CV.Rescale(rescale, shift) # 重新缩放、移位图像 + hwc2chw_op = CV.HWC2CHW() # 对图像数据张量进行变换,张量形式由 高x宽x通道(HWC) 变为 通道x高x宽(CHW) ,方便进行数据训练。 + type_cast_op = C.TypeCast(mstype.int32) # 将数据类型更改为int32来适合网络 + + # 在图像上应用映射操作 + mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers) + mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers) + mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers) + mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers) + mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) + + # 其他增强操作 + buffer_size = 10000 # 混洗程度为 10000 + mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 随机将数据存放在可容纳10000张图片地址的内存中进行混洗 + mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) # 从混洗的10000张图片地址中抽取32张图片组成一个batch,参数batch. size表示每组包含的数据个数,现设置每组包含32个数据 + mnist_ds = mnist_ds.repeat(repeat_size) # 将batch数据进行复制增强,参数repeat_size 表示数据集复制的数量 + #先进行shuffle、batch操作,再进行repeat操作,这样能保证1个epoch内数据不重复。 + return mnist_ds + + +class LeNet5(nn.Cell): + """Lenet网络结构""" + # 定义所需的运算 + def __init__(self, num_class=10, num_channel=1): + super(LeNet5, self).__init__() + self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid') + self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid') + self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02)) + self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02)) + self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02)) + self.relu = nn.ReLU() + self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) + self.flatten = nn.Flatten() + + # 使用前面的运算来构建网络 + def construct(self, x): + x = self.max_pool2d(self.relu(self.conv1(x))) + x = self.max_pool2d(self.relu(self.conv2(x))) + x = self.flatten(x) + x = self.relu(self.fc1(x)) + x = self.relu(self.fc2(x)) + x = self.fc3(x) + return x + + +def train_net(network_model, epoch_size, data_path, repeat_size, ckpoint_cb, sink_mode): + """定义训练方法""" + print("============== Starting Training ==============") + # 加载训练数据集 + ds_train = create_dataset(os.path.join(data_path, "train"), 32, repeat_size) + # 进行训练 + network_model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor()], dataset_sink_mode=sink_mode) + + +def test_net(network, network_model, data_path): + """定义评估方法""" + print("============== Starting Testing ==============") + # 加载保存的模型进行评估 + param_dict = load_checkpoint("checkpoint_lenet-1_1875.ckpt") + # 将参数加载到网络 + load_param_into_net(network, param_dict) + # 加载测试数据集 + ds_eval = create_dataset(os.path.join(data_path, "test")) + acc = network_model.eval(ds_eval, dataset_sink_mode=False) + print("============== Accuracy:{} ==============".format(acc)) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description='MindSpore LeNet Example') + parser.add_argument('--device_target', type=str, default="CPU", choices=['Ascend', 'GPU', 'CPU'], + help='device where the code will be implemented (default: CPU)') + args = parser.parse_args() + context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) + dataset_sink_mode = not args.device_target == "CPU" + # 下载mnist数据集 + #download_dataset() + # 学习率设定 + lr = 0.01 + momentum = 0.9 + dataset_size = 1 + mnist_path = "./MNIST_Data" + # 定义损失函数 + net_loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') + train_epoch = 1 + # 建立网络 + net = LeNet5() + # 定义优化 + net_opt = nn.Momentum(net.trainable_params(), lr, momentum) + config_ck = CheckpointConfig(save_checkpoint_steps=1875, keep_checkpoint_max=10) + # 保存网络模型和参数以进行子序列微调 + ckpoint = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) + # 通过训练和评估功能将图层分组为一个对象 + model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) + + train_net(model, train_epoch, mnist_path, dataset_size, ckpoint, dataset_sink_mode) + test_net(net, model, mnist_path)