diff --git a/奥运奖牌榜——周艺颖.ipynb b/奥运奖牌榜——周艺颖.ipynb new file mode 100644 index 0000000..e4101b4 --- /dev/null +++ b/奥运奖牌榜——周艺颖.ipynb @@ -0,0 +1,109 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "id": "a6e78756", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'name': '美国', 'medal': '39'}, {'name': '中国', 'medal': '38'}, {'name': '日本', 'medal': '27'}, {'name': '英国', 'medal': '22'}, {'name': '俄罗斯奥委会', 'medal': '20'}, {'name': '澳大利亚', 'medal': '17'}, {'name': '荷兰', 'medal': '10'}, {'name': '法国', 'medal': '10'}, {'name': '德国', 'medal': '10'}, {'name': '意大利', 'medal': '10'}]\n", + " Unnamed: 0 name medal\n", + "0 0 美国 39\n", + "1 1 中国 38\n", + "2 2 日本 27\n", + "3 3 英国 22\n", + "4 4 俄罗斯奥委会 20\n", + "5 5 澳大利亚 17\n", + "6 6 荷兰 10\n", + "7 7 法国 10\n", + "8 8 德国 10\n", + "9 9 意大利 10\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlqElEQVR4nO3debgcZZn+8e+djYSwQ4ABCcuwjCCgEjbhx7ALiqCIgLgjRkBUXEZQcWUUcVARWQQGERHUoLIqq7IvIgyg6Ig4AiqbQFgFEkju3x/ve0hzOCfJienqysn9ua6+urqquuvp9el3LdkmIiKibUb0OoCIiIiBJEFFREQrJUFFREQrJUFFREQrJUFFREQrJUFFREQrJUFFdJC03BD3X6RbsfwzJI0c4v5LDXH/iZLGDymoiCFKgophTdJ4SddJWnou7/JjSW8YwiH+LGmt2Rx/RUkThvB4/e//fkn/MZvtY+r1uyUdU5d3Ba6QpAH2X1rFaZJe27Hpx5I2HuQYn5c0ud/qLwN7DvX5RAzFqF4HENFl+wN/tP1o/w2SVgc+C0wH+kasjwSOkfT6jl1HAUfZ/oOk9YATO/adAJzaLxccaPs3dXkT4FOStgW2BL4JPAvMrPcfD2wySHyTgA8Cz0o61/YfB3h+h0laGbgCmF4T1leBRYFf17jutb1b3f9bwJk1humSPgPsBrwCOKHu7xpT32vSt+/iwJXA08AywBaS9q2vz9G2fzRAfBHzLAkqhh1J3wVeWW+uCTwo6daOXUYD36EkmlOAacxKUAMZBdxfl8cCfwM+DywBLEdJcM8Cf6GULMb13dH2eTWprW/7EuDlc/kcNge+DuwELA5MkfR+27/qt+uXgZOBlQABpwE/sP2F+jhH17j6TAOeq8/X9X6HAs8De9veX9Idti1pNPAv9fjTANl+taSLgX3rup/ZfsXcPKeIoUqCiuHo/banSfocsKrtfTs31h/ekbafBa6RtAdw2CCPdZrtb3TcnlmvpwHHURLc08D7gT367QOA7SMkvUzSBymJoDMZjgCesX1qjW0E8CFgb2A32w/W9W8GfiTpSuAI2w/Xx35W0mHAqcDfgYeAP9Tqvu8DrwI6qwhndBx/dI11u7o8UdLbKaUvgFWAi4EVgH8AD1JKX5cCW1MS4kWDvG4R/7QkqBh2anKaCEwGNpK0CnCC7V3q9ucopYg+SwBX2D6483EkHUQpQbzo4ev1tyg/2l8E7gWeAI6v61zvvyJwNaV0dQrwCCVBHEdJiFMpCWpa3X8jSgnoAuB64BxJM+rxRgHn1cf+naTdgN8CHwPeDFxDSXQflzQKeDellPi6+nxfeFo1zieBzYA/UEpIKwOPU0qco+vr9GdJawP/V5/n2ZL+AdxS95kBzJT0V+Bg2z8hYj5Kgophp/bEOws40vYDklYF1u/YPhqw7efrqtl1Fupf9TeCcuddJB0BjAEuBzYE3kX58e/b5wFgLUmHAo/ZPl3Sv1LaxI6rHQ9+ZPvx+ti3Ae+wfcscnt83bT9Re+o9SEk0e1GS8TsppZuLgRNtPzNA/Afavqw+1onAH4GJwPnAXcB+HfvvCqxOSXh/pSTQj1La7h4CTqj73De7mCPmRRJUDEerUUpFb5W0JyWJrCDpmrp9DKXt5px6ewSwp6St6/IISlXcUpQqrU6jgVGSzgB+DXyDUsX3q7oMs/9efZhSGoHSVvVNyo8/tp+XtI+kk+tj9nWk6CtFjaz3uYhSAjNwsu2ZwHeB79ak93vbR3ceVNKIut+iwLdrVeIRwI+B91Da1jarr91R9T7jgf8CzgVuALaglPrOp5QKb6a0X6muj5ivlNNtxHAlaXXbd0l6GXCN7dUkTbD90AD7fphSOtie0jHhQGAn2+d17DMCeBmlOux220/Wtp7/sf3dus8rKaWaB/p6wdUS1AOUEseplASwYn2ctwDb2L5ygJj2Bibb3lbS4raf7Ld9V+ArwDPMKumtSUkYd3bsOgY43PZZki6lJJVtKVV6NwInAW8EjqVUhV5aH38ysCqlOvCBjud4HLBjvT+UkupZ/eOP+GelBBXDkqRNgIslvZoXtzedI+kK25/u2PcLwGsppZA+E4Aj6lihg2s7zvJ1n+n1fqMpXcepVWvT630XobQLdZYqxgIPA9+jJKvrgbspHRlWo3Tf7ox/Y+BLQN+YrMskfcX22X371OTZmUA3An5A6WV4mu3TBnhp1gb+TElQMyld0kcBU4B1KFWSzzCrl6OAT3QcQ8DmwCtqW98hvPj1jZhvkqBi2JG0PvBTSrfpu2qHiT5vBi6vyeXTlB/ilwE71BJRX/vUvbWr9xTgAkk71TalbesxVqaUOD5KKRntT6k2vLqj5DQCOIhSGhMl4RzZrwT3V0mLShpbexUiaXvgGEoHhztqW9OHgYskTe1f2qrP732UtqA3AvcA36k98r4NXFrbrNYBnrD9aI1tlO0dOx7nh8C3bV/R8fDuN+B3P+DntqfV2xsAF87m7YiYZ0lQMazUH9MTgf1tX1yrwQ6kjmOqnSZ2BA6ntDVdRumo8Kyko4C3UToAUH/U3wC8po4LWhX4CLBRPdx/2r64Hvf3lAT0XUm/Bj5Z93kzsDGlHekQ4FKVmSVEac8aT/kerkQZkLs4pRffw8Dpkp6ltPc8AfwMOEvS+rYfVJme6CZKe9mJwOa2n67H3UvSdpTu79+ur8OylKRKPfbofi/fIpTqwP7GAovU538AZYDuWOAOSi/A3w72fkT8M9IGFcOOpFF9PfRUZovYCrjA9iNzuN+KwHOD7VdLV28Errf9t0H2WYpSBXZZv+7dQ4l/vO1/DLLtVZ29/CQtOxfPS+73RVeZccJDjVHS6L77SFqkoyQVMd8lQUVERCtlstiIiGilVrZBLbfccl5ttdV6HUZERDTg5ptvftj2S2b9b2WCWm211bjpppt6HUZERDRA0j0Dre9qFZ+kFSTdUpdPkXR9ndgyIiJitrrdBnUUME7S7pTZozcH1tBsTvAWEREBXUxQKido+wdl1PzWlAGPAJdQR9/323+ypJsk3fTQQy+ZiSYiIhYyXUlQdYzFZyhzfkEZjHhvXZ5KOb/Mi9g+yfYk25MmTJjnM2RHRMQw0a0S1KHA8bYfq7efYtZZRhfr4nEjImKY6FYvvu2BbSV9gHLq7YmUc8ncQDlvzh1dOm5ERAwTXUlQtrfqW5Z0BWUSy6slrQTsTDnvTPedqTnvMz/tk1k5IiLml65Xtdne2vYTlI4SN1DOffP47O8VERELu8YG6tp+lFk9+SIiImYrnRUiIqKVWjnV0bCU9rCIiCFJCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlopCSoiIlqpawlK0jKSdpC0XLeOERERw1dXEpSkpYELgE2AyyVNkHSKpOslHdaNY0ZExPAyqkuPuwHwUds31GS1LTDS9uaSviNpLdt3dunYERExDHQlQdm+EkDSVpRS1DLAlLr5EmBL4EUJStJkYDLAxIkTuxFWREQsQLrZBiVgL+BRwMC9ddNUYIX++9s+yfYk25MmTJjQrbAiImIB0bUE5eIDwG+A1wDj6qbFunnciIgYHrrVSeIQSe+sN5cCvkKp1gPYELi7G8eNiIjho1udJE4CpkjaD7gdOAe4StJKwM7AZl06bkREDBPd6iTxKLBD5zpJW9d1X7X9eDeOGxERw0e3SlAvUZPWlDnuGBERQTorRERESyVBRUREKyVBRUREKyVBRUREKyVBRUREKzXWiy9a5Ew1e7x93OzxImJYSAkqIiJaKQkqIiJaKQkqIiJaKQkqIiJaKQkqIiJaKQkqIiJaKQkqIiJaKQkqIiJaKQkqIiJaKQkqIiJaKQkqIiJaKQkqIiJaKQkqIiJaKQkqIiJaaY4JSsWkQbatPv9DioiImPsS1LmSvi7pIEkbA0jaCDize6FFRMTCbLYnLJQk25b0J+BEYFVgZ0knAtOAtzQQY0RELITmdEbdCyU9BSwJrAlsBEwCzgPWAyYAf+tqhBERsVCaU4Lag1JqOgj4InA/sJvtGZJWA74jaTvbOad3RETMV3NKUAcCawEPA78BjgbuknQG8ArgkCSniIjohjklqCUAA6+hVOWNAm4DbgV2AX7XzeBiIXGmmj3ePvlPFbEgmFMvvsuAu4BXAXcAbwI2BHYCvgp8qqvRRUTEQmtOCWobYDpwLLAOcDrwJ+AG26cD/yopg30jImK+m20Vn+3PSRpP6cU3o+5/mO3r6i4H2J7Z5RgjImIhNNvSj6QlgHHAs8BzwEzb10k6GMD2Y90OMCIiFk5zqp77DHAcpQff14Bf1/U7dTOoiIiIOSUoU2aQuMv2e4D/lfQ94FWSzpP084HuJGlJSRdKukTS2ZLGSDpF0vWSDpvPzyEiIoahQROUpKWAt1N67q0i6VxgA0qJ6lbKNEeDTXX0NuDrtncEHgD2Bkba3hxYQ9Ja8+sJRETE8DRoJwnbj9UBub8CNge+Tqnm+w9ggu1plPn4Brrv8R03J1AS3dH19iXAlsCdnfeRNBmYDDBx4sR5eCoR80HGZEW0xpyq+C4CVgeuALYDfgp8ALh5bh5c0ubA0sBfgXvr6qnACv33tX2S7Um2J02YMGGugo+IiOFrbsZBLUqp2rsCuBo4Chgl6TRJp0saOdAdJS0DfAvYF3iK0hsQYLG5OG5ERCzk5jTV0XmU8U9946BWB06mTHE0Ehhte0b/O0kaA5wFfNL2PZJuplTr3UCZieKO+fYMIiJiWJpTgjqGUvpZlDLd0VhKz76nKNV8P2FW1V2n9wKvBj4t6dPAqcA7JK0E7AxsNl+ij4iIYWtOM0lsJmlx20/2rZP0bkpi2oFSGrppgPudAJzQuU7SefU+X7X9+D8fekREDGdz0xb0F0mHSOrr3vT2mrCeBNae2wPZftT2FNsPzEugERGxcJmbBHUzZZqj82uS6usX+0ZKSSoiImK+m9NcfAcDMym99zYBDgAsaR1gOds3dj3CiIhYKA3aBlVLS+Mpp3xfB3g35bTvY4FvUGaLiIiI6IpBS1AuvgS8GXgtcB1wBrO6na/aSIQREbFQmm0vPknXA89QupmfQxls+yCwJ3C2pB1tP9ftICMiYuEz2zaoOrnrjynz6J1ve9O6/jFgCvCOLscXERELqTmVoCYArwTeD/xM0veBkXV6o/OB44HvdDvIiIVSJq6NhdycSlAP2Z5s28B+th+kDMC17b8BBzURZERELHzmNNXRC2zfV69/3LHuL90IKiIiIrOKR0REKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREKyVBRUREK3UtQUlaQdLVHbdPkXS9pMO6dcyIiBg+upKgJC0NnAaMr7d3B0ba3hxYQ9Ja3ThuREQMH6O69LgzgL2Ac+vtrYEpdfkSYEvgzs47SJoMTAaYOHFil8KKiHlyppo/5j4efFvT8SSWgc0ulvmgKyUo20/Yfrxj1Xjg3ro8FVhhgPucZHuS7UkTJkzoRlgREbEAaaqTxFPAuLq8WIPHjYiIBVRTieJmSrUewIbA3Q0dNyIiFlDdaoPq7xzgakkrATsDmzV03IiIWEB1tQRle+t6/QSlo8QNwDb92qciIiJeoqkSFLYfZVZPvoiIiNlKZ4WIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilJKiIiGilRhOUpFMkXS/psCaPGxERC57GEpSk3YGRtjcH1pC0VlPHjoiIBY9sN3Mg6RjgIts/l7Q3MM72qR3bJwOT6811gDsaCWxgywEP9/D4nRLL4NoUT2IZWJtigXbFk1hmWdX2hP4rRzUYwHjg3ro8FXh150bbJwEnNRjPoCTdZHtSr+OAxDI7bYonsQysTbFAu+JJLHPWZBvUU8C4urxYw8eOiIgFTJNJ4mZgy7q8IXB3g8eOiIgFTJNVfOcAV0taCdgZ2KzBYw9VK6oaq8QyuDbFk1gG1qZYoF3xJJY5aKyTBICkpYEdgKtsP9DYgSMiYoHTaIKKiIiYW+moEBERrZQEFRERrZQEFRERrZQEBUgaOYftTfZ2jAG09T2S9AZJrfweqdim13EASBoh6XUNH7M1n5mWxdLKz+tA0kkCkDQVuLX/asD1ekPbyzQUy0jbM2azfZTt55uIpd9xl7f9947bG9q+rcHjt+Y96ohpeeBiYFPg27b3ret3B85r4n2SdKztgyRtDewIHGV7at02ErjO9qbdjqNfTD+1vXv9IdzK9hX1B/gK21vO6f7zMY7WfGZaFstNwPRBNo8A/mJ7zyZimSPbC/0FuJzyIdm7Xk+q11/o295gLFOBX/a7XN5xPbUHr8/IztcAWBb4P2CthfE96ojpFOA9NY6f1XVfAK4BFm0ohl/U6/HAu4DrgBOAJer6axqKYxTwkfpaXF7XCbiy8z1s+P1pzWemTbHU440GNgY26rhsWrf9d5OxzO6SqqvCti3pHcAU4AjgTmBiD2K5DdgO2Av4EeWDczPwedufk3R50wHZniHpeQBJSwJnAafZvrPZMFrzHiHpvcCDwD62T5U0U9L7gWWAP9p+usFYdqyL91MS5GuBLSTNBGY2FMY4YEXKD/HyUN6wGkOfpqtr2vSZaVMsUP7Q7AdMq7cFLAL8yvZ+PYrpJRaYusiGLE2Zjmlx4FxgTA9isMvfmHdQPjRHAMdRElUvjZS0F+V1+QawfY/i6Ol7JGmkpJOBNWx/Cni2bjJwKnAwsGSDIY2gzMqyeb1sCjxO+Xfc2Gwttp+0fQiwDy9ORG1oQ2jD97o1sUh6g+3HgP0pZ5X4EHAMcEjTscxJSlAvtiTli70E8Ara9UH+WC+CkLQvMAPYmvIP60xKKWFJSe8Bxtg+scGQev0ejQKeA/pKSH0/wC8Hjre9n6RFG4xnJnAD5c9Mn76YRCmNN2kMpWTZR4Pt2KBef2baFssJkm6w/ZCkpSS9nPIneD/g0R7EM6iUoCpJAv4CHA3ca/trzPoR6oU2fJABFgXG1uWZlB+/sZTPzrgm42rDe2R7mu0DgackfYJZM/T/AfidpC9TEnlT+kpQm1FKT5sCu3asa0w9U/ZX+q3uaQmqDZ+ZFsZyHnBhbS74d+Aqyh/h/5Z0uaSrehDTgJKgqlqtdqxLD7qP1tXX9m1uMpYWfZCxfWwtIV0L/ADYE/gd8Kjt421/q8FYWvMe2f4mpc3lvPp+jbD9DeAflBNuNmWG7S8CXwL+CGwD/BvwFdtfaCoISWOA54G3Un9Xai++JpP1S7TsM9OWWC4GfgHsBNwCHAU8Q6ni26leWiFVfMWrJV0BWNLH6zWUXPFaYP0mu3fXxtRja+eEnn6pOjxj+3hJPwJOB65o+Pid79HHKO+NmfUebdCDLvifoHQKOAt4pK47gmbPBt1XhbYDpQ1qcl/nlSYThO3p1NKTpPv7VgOf7Iil6d+b/p8Zevi97v8bQ7/Pb5Ox/BbY1fY0SU/bPlLSDynf66/ZPreBGOZKxkFRvjy2Z3bcXtf27ztur00ZG/DsgA8wf2N5jDJeYqA3ZiSwPjChyR/iOp7mF7a3rrcXAS4Djrb9k4ZiGAFsZPvXHes2BH5TE/oStp9oIpZ+cW0F3NjEZ2Ooaslu16Z+cOp7tDelzXQj21f1276F7WsHvHOX4rE9s+N6T9tT6ralgdVs39JQLMsDM20/3LFuM9s31M5HF/bo87uO7Tvq8hKUzj+3Nh3HYJKgKklHAZ+nVE/8mFLMnWJ7D0nHAz+1fVkDcbwoWQ6wXe7BmyZpaduPdtxenfKFu6eh4wu4zPZ2HesupXSpXh440fZuTcTScfyVbN8naSNgWduX1PWjbT/XUAyz/bw0qe89AnanjMW6qN8ud9q+vuGYRgMX295W0mW2t5e0MWUIx0G2f95QHDtT2isPonRE+CXwBkr12juBQ23f10QsHTGNBNaz/Zt+61ex/dcmYxlMqvgASYtTBs5tTHlNnqr/uMbWN3Ej4INNxNL3YyPp55Q6fShJ81Dbt/ciOdW4Hu13+66Gj29JMwAkXUh5bTao79PHKV28u07SMsCqlPFqZ0ramzJAdi3gEknjgPNprhv+jZJmNyvAPbb3aiKQjvfIlO73T3VsXpzyuizXRCwdMT2nOoYPeE7SssBkyufnFw2GMoMy5mgJSo+5VwDTbV9Wqx0vA9ZtMB4onZ1OpnSsAUDSmsBlkl5u+5mG43mJhT5BSVqFUve6BOVD1H9g4WHAVz2b6Ye6ZHHg7ZQ2htMpDeCNUxl8+jwvfW1GUKocRzXRzVzSFEo9/qHAIrZ3lnSppN2AZWyf0+0Yqj2BxW3fUtsQ9qN0vf9U3b4L5Ye4EbYn1VLCK3nx+zPK9q8k/XdTsUi6qMbxTkoCX5/yQzwC2AP4n6ZiqfGcQZnSZ11J3wFWoNQavU/SDcAE4G8NxPFvlNfk/yi9XpeYtUlfo8z+0YsTuD5Nx5RH9c/Vd4EPtSE5QXrxUYuyO1GS9evrZVFJbwJeAzzSVDtLP8/Yvsf23XV5sH/J3fZJyhd7ZeBzwCr1sjLlR3nZJoJwmRvsFuBu4GUqI/KXB94IvK+JGKo/1OMC/CtlSqEbgDG1ofkdlD8UTeqbFeBd9fJu4L0AbnZWgF0oien79fYWtt8CLO3itw3GAqXDypGUz8yRwGLAGZK2AB5j1vvYbX+nJKcVKCXIXep6U9rrxtGDGSVqbUyZk6q0s18IHGP7vKZjGcxCX4KqROlm+Xhdnkn5wDwPrNNku4/KwNjpwIqS9qnxdC6Psd1IdVb1V9tfrrFtb/tLHbFu37etIQbuo7w+z1FKcKsDG1CSVxPuBbaT9FlKcp5ev9zTgS9S5uSb2lAsfbMCnC9pf+CkWjpYC3h4TvftgmUpvynj67Uk/QBYrwexYPv22nFjmu07JP3Z9k6S3kcZCrAKDZTqbE+V9BtKFd/GwE+BNSnz4T1N+b1ppBoWXmgPWxJ4ElhB0imUwfeTbfekpmYwC30JqvbmuZBShXVNvTxbx7ncSKkb/nyDIa0MrETpHrxivfQtrwSs1mAsMPtpaxprD6ulk1dTBp/+3fYPKcnqTZSR8Us1FMpUSjL6BaUO/25mtUEtAdxTfwCacoKkCfUPVN+sACdSZiJp2teBtSmvx+WUTgDvoZQ0e2UCpSQF8Hzt7HMy8GGgkQ4+1d8pQxF+SPn8nA3cRPmT9V5K6aopy1D+2L2K8mdiVUou6OUMGwNKLz5eqHu9hFKFNRI4wOV0ARfY3qU2yr/VZf6qpmK61PYO/ZebJulq2/+vLl9ue5uObS+63UAsl9jeUdJllBLvJrZXqNWxr7L92QZiWITSK2xrldMW3A0cSPn8jKe0NbzL9v7djqXGczywCeXf8HqUUvbd9baAkba3aiKWGs+lwDcpgz6foPzxg/IDOL7hz8tiwNWU92cJSoJYF9gN+FitPm8ijnGUXnsfAT5ASVBXMut0GyOA0TVxNqrv+y1pXeBY4FTbTVdRD2qhL0EB1AbBX1FKT1cDi6ucv6avquYSSntUo2ENsty0tpSgRPnzgO3tbb+BMrWQKFO3bNJQKM9R/pVDSQLnUDoD/AXYsXajXquhWKB9swKMsn0BpV1wGvBe27va3qXJ5FRtAhxX35NDgLttfw/4DHBurU7vuvr7sg9wOPAbSunpy5SSzD/qpVedElxj/D2wM7CvpJ78GR6QW3DOj7ZdgDX73V6kBzH8njJg9xbKyO9JPXotngJup3yxHqbU2d9CaQx/DPhDg7Gs1O/2DsyqBRjbYBzvpiTLaygN798CLurY/v0GY1kDOKUun12vV6XMr7Zbw5+VEZSxRX2316OUchuLYXavU7/bywBrNxzDyL7Xg1K9tn2PX5NxwPX91v0bcBewWK/fM9up4ouYV5KWs/1wbf/azfZpdX2vBlO3elaAaBdJmwMP2v5zx7oVKG1iR7r5oTUvkSq+iHnkOm2N7cdsn6Yy9RLANrXqsTF1QPkL8+7ZfsL2rXWcX8QLVM5p9m3KAN0HJY2XtJikCZROHL9sQ3KCdDOPmCeSjqS0R82kNnJTZo/YCDjc9hYNh9T6WQGiHVwmoZ5IaTo4n9LlfAzwEGUC5NE9DO9FUoKKmDfbUGYxF+VLfjvwWB2D9OfZ3bFLWj8rQLTKKpRZUaAMuD+qLo9l1kDrnkuCipg3E4FPU05x8UFKT6zpwIeArzUdTG3zavWsANEOkj5H6Qgxpa7qay9dktLr8+4ehDWgVPFFDJGkleviBZSxLTdTZph4OXBakx0TFqRZAaI1bqRURffvyDODMsh788YjGkRKUBFDoHLm2DMobU+jKV2616dM7juW0k23SQvMrADRDrYvpHxOX99v0whKrUCT4/hmK93MI+aBpAcog7qXpIw5EmUw91XAbW7oPEP9Ymr1rADRHpIuoFQD70H5MzOWcoqUj1C6njc5DdSgUoKKmDf3Uab0+R1l3rmVKSWYb1JnEu+Bds8KEK1QhySMotQA7ElJUm+o11+q162QBBUxb84GtqCcx2crShvUUrafppyupdHvVu2190L3YNvTgAOAk+qcdBFA6WZOOeXHr20/ZPt+2/fZvp/yx+bO3kY4S6r4IuYTSevb/q2kVwO3NDmbRB0YvHrfrACS3mn7e/U0LWe5oVPQR8xPSVARQyTpNbavq8sfs914t/J+8dzCi//1jgL+H+WEfFe5zkYfsaBJN/OIoTsU2LUuv07S+I5toszo/ZkG41kL+B6wLWVm83so1X37At9pMI6I+SoJKmLo7pW0aG1vmk4ZD9U3994IOubE67ba1jWdMqv6mpQZ52+mJK31bH+0qVgi5rckqIihexw4QtLTlDPI7kI5d9jtwDW2n28iiDqL+k8pp0R5jnL6hLXr7SeBVSSNtf1sE/FEzG/pxRcxdMcD9wM/AfamdDPfCvh34GpJH2oiCJczPG9HGcfyR8qJGz9KmTD2fuBI4D+aiCWiG9JJImIIJI2lnMX2FZSTNvZZmzIy/3DKCR2/XLt6NxHTDyiDLKGMhRoN7GF7nKSzbb+piTgi5rdU8UUMge1nJW0LXESZzfxa4O2UarWXAR+z3dg4ktpBY5rt90jaCvgTZaDlZXWXY5uKJWJ+SxVfxNBtQumUMBFYF1iRMhff34BHGo5ld+AMSesB/0UpSV0LrCvpF5QZLiIWSClBRQzdzpSk9BwlQd1NSVrrUmZueJvtPzURSN9ce5KWAd5seyqlw8bNtTpy7SbiiOiGtEFFzIO+mRo6bh9g+4R6LqYJtq/tYXgRw0ISVMQQSZJt9133Op6I4SptUBFD94iky6ntTZL2lLRsj2OKGHaSoCKG7lbb2zCrm/kBwMWS9u9hTBHDThJUxNBtIOk8ylioPpsBL5eUgbER80kSVMTQ3Ql8kI4ZxOv0Rv8JfFLSir0KLGI4SYKKGLqlKVMMLS3pw5QxUQCnAScBb+1VYBHDSRJUxLzpm738EWAdSVtTpkD6LPCaHsUUMawkQUUM3X22TwEesP19Smnqq8DJtqcDE3oaXcQwkQQVMXTjJF1PPe+T7V9Tqva2qNtn1lOwR8Q/IQN1I+aBpFGUWcNfB5wDzKyDdw8GHrT9gx6GFzEspAQVMUSSxlEmZN2UMgZqc+B8SasC/wDe18PwIoaNJKiIodsDOBlYFlgeWJ8yceytlKT12p5FFjGMZDbziKEbU69HATMoZ7O9lnK6jbOAJWj+tBsRw05KUBFDdzfwL8DtwNOUZPR5yik4jgGm9yqwiOEkJaiIobsOOI7yB29FYDfK2XTfS0lOHwB27Fl0EcNEElTE0P0LcDBwCbC87S9Iuhd4zPaPJb2lp9FFDBPpZh4xRJIuBMYBV1LaoKB0OX+OMsPEIrY/1aPwIoaNJKiIeSBpOUpV3tuAw4Hf920CRtu+vlexRQwXSVAR/wRJawAjbP+p17FEDDdJUBER0UrpZh4REa2UBBUREa2UBBXRYpLWk7Rmr+OI6IW0QUU0RNJIYCpwyyC7vBJYC9ioY92bgUWB0zvWXWv7yW7EGNEmGagb0RDbMyTdBmxbb88EqOeOEvBLYA3gI8Cp9W6/qNdL1esD6qWvW3vEsJUEFdGsmcDrgQ9Imgg8DjwGfK9uN6WEtRiwNyVx9Q0Gvg34CfBUg/FG9EwSVETzfgZcSJku6SbgGkrier/tG4EbJY2hzFbxPmBL209I2hG4y/ZfehN2RLOSoCKatz7wNcoEs3sCTwKHAtSTHn4GWBP4LqUj01tqwnojJalFLBSSoCIaZvs2YHtJH6ecsuONwM11873AmZQ2p3cB/0lJVCcD19j+34bDjeiZ9OKLaJCkKygdH14DjKecnmM6papvK+CdlHamKcA9wO6UP5KHA0cDB9n+XdNxR/RCSlARzRpp+/CBNtTk9QjlXFN7Udqq3gGcQek8MRm4QNInbJ/bTLgRvZMEFdEQSSOADWoiGsgrgZUpXc3favsxSZcAlwO/tW1JW5JefLGQSBVfRIMkjbGdU8JHzIUkqIiIaKXMxRcREa2UBBUREa2UBBUREa2UBBUREa30/wFbcviMTa6YBAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import requests\n", + "from bs4 import BeautifulSoup\n", + "import pandas as pd\n", + "data = []\n", + "countries = []\n", + "gold_medals = []\n", + "r = requests.get(\"https://tiyu.baidu.com/tokyoly/home/tab/奖牌榜/from/pc\")\n", + "soup = BeautifulSoup(r.content,'html.parser')\n", + "Every_country_name =soup.find('div',class_='rank-list').find_all('div',class_='rcountry')\n", + "\n", + "for i in Every_country_name:\n", + " country = i.find('span',class_='name')\n", + " countries.append(country.string)\n", + "Every_gold_medal = soup.find('div',class_='rank-list').find_all('div',class_='integral')\n", + "for j in Every_gold_medal:\n", + " gold_medal = j.find('div',class_='item-gold')\n", + " gold_medals.append(gold_medal.string.replace('\\n','').rstrip())\n", + "for m in range(10):\n", + " data.append({'name':countries[m],\n", + " 'medal':gold_medals[m]})\n", + "print(data)\n", + "table = pd.DataFrame(data)\n", + "table.to_excel(\"奥运会金牌数.xlsx\")\n", + "\n", + "Olympic_game = pd.read_excel(\"奥运会金牌数.xlsx\")\n", + "print(Olympic_game)\n", + "plt.bar(Olympic_game.name,Olympic_game.medal,color='orange') \n", + "plt.rcParams['font.sans-serif']=['SimHei']\n", + "plt.xticks(rotation=90) \n", + "plt.xlabel(\"国家\") # 给x轴命名\n", + "plt.ylabel(\"奖牌数\") # 给y轴命名\n", + "plt.title(\"东京奥运会奖牌榜\") # 给该柱状图命名\n", + "plt.tight_layout() # 设置为紧凑型布局,不然x轴head显示不全\n", + "plt.show() # 出图" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b5291721", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}