parent
a9c9b73a09
commit
7060978506
@ -1,45 +0,0 @@
|
||||
import time
|
||||
import torch
|
||||
import torchvision
|
||||
from torch import nn
|
||||
|
||||
list1=[]
|
||||
list_data = "2945807302157368193036426212997220033224538323640562241549909514547527720405608656907029313758584719540613589525481454212472019860395476200753292612652064279287757447621682752174888515904584744529078454748554565275582823574162998649840329792320732021527380675691933505646185089414885945266985722969732915061599825966637476"
|
||||
# print(len(list_data))
|
||||
for i in range(1,len(list_data)):
|
||||
list1.append(int(list_data[i]))
|
||||
# print(list1)
|
||||
list1=torch.tensor(list1, dtype=torch.float32)
|
||||
# print(list1)
|
||||
# print(list1.shape)
|
||||
|
||||
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self):
|
||||
super(Model, self).__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(321, 159),
|
||||
nn.ReLU(),
|
||||
nn.Linear(159,81),
|
||||
nn.ReLU(),
|
||||
nn.Linear(81, 3),
|
||||
)
|
||||
|
||||
def forward(self, input):
|
||||
return self.net(input)
|
||||
|
||||
|
||||
model = Model() # 导入网络结构
|
||||
model.load_state_dict(torch.load('model.pth', map_location='cpu')) # 导入网络的参数
|
||||
|
||||
# print(model)
|
||||
|
||||
|
||||
with torch.no_grad():
|
||||
output = model(list1)
|
||||
|
||||
result = output.argmax().item()
|
||||
print('这是等级.。。。。。。。。。。。。。。。{}'.format(result))
|
||||
|
Loading…
Reference in new issue