import torch from torch import nn DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") list1=[] list_data = "2945807302157368193036426212997220033224538323640562241549909514547527720405608656907029313758584719540613589525481454212472019860395476200753292612652064279287757447621682752174888515904584744529078454748554565275582823574162998649840329792320732021527380675691933505646185089414885945266985722969732915061599825966637476" # print(len(list_data)) for i in range(1,len(list_data)): list1.append(int(list_data[i])) # print(list1) list1=torch.tensor(list1, dtype=torch.float32).to(DEVICE) # print(list1) # print(list1.shape) class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.net = nn.Sequential( nn.Linear(321, 200), nn.ReLU(), nn.Linear(200,100), nn.ReLU(), nn.Linear(100, 3), ) def forward(self, input): return self.net(input) model = torch.load("Modle_0_GPU.pth").to(DEVICE) model.eval() with torch.no_grad(): output = model(list1) result = output.argmax().item() print('这是等级{}'.format(result))