parent
18e9f38f20
commit
428694ca2f
@ -1,155 +0,0 @@
|
||||
import requests
|
||||
import re
|
||||
import time
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
from wordcloud import WordCloud
|
||||
from collections import Counter
|
||||
|
||||
headers = {
|
||||
'cookie':'CURRENT_FNVAL=4048; buvid4=CDB22228-76EA-BC93-F037-78FC6CEC077D36275-023090719-X83v1qigvaVs%2BeTu3%2F5T2g%3D%3D; rpdid=|(u)luk)m|)R0J\'uYmR|)Y)J); enable_web_push=DISABLE; header_theme_version=CLOSE; DedeUserID=567151924; DedeUserID__ckMd5=3d51b3cb3879b2e0; PVID=1; buvid3=909EA327-0037-5349-5CF4-5B2C4EF5300103254infoc; b_nut=1726374703; bsource=search_bing; _uuid=A28E1582-10535-12B8-49B2-D1F1026722D1607876infoc; buvid_fp=1ed033837a881c0f6fee6ce1ae293ed0; bili_ticket=eyJhbGciOiJIUzI1NiIsImtpZCI6InMwMyIsInR5cCI6IkpXVCJ9.eyJleHAiOjE3MjY2MzM5MDQsImlhdCI6MTcyNjM3NDY0NCwicGx0IjotMX0.52ZE1RDG5tSqHh-ZOGgEHDzj6W1UyOtiMkcxw_a2WNY; bili_ticket_expires=1726633844; SESSDATA=701189c6%2C1741926705%2C58e19%2A91CjCANFin8L-nRK6CjxH9_BSgRe6HHUSWybFilZklu8yORRObfCV2cnJswJPECKKy1UcSVkMtcE4ydHItZF9lOW43ZFpyelRVVEUzZUVCdlh6S2ltWWJIaTg0MU1DclRIeG8wbE84cE1pSFBkOXA1alNxTkp3bDJuLWNCN2IzV2JXX2p4SGIxaW9BIIEC; bili_jct=98cbd1d0535939dc4a5c474a44d27ad7; sid=7wfo5xb3; home_feed_column=5; browser_resolution=1432-776; CURRENT_QUALITY=80; bp_t_offset_567151924=977713175669506048; b_lsid=811052DA4_191FB79926A',
|
||||
'Referer': 'https://search.bilibili.com/all?vt=82484714&keyword=2024%E5%B7%B4%E9%BB%8E%E5%A5%A5%E8%BF%90%E4%BC%9A&from_source=webtop_search&spm_id_from=333.1007&search_source=5',
|
||||
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36 Edg/128.0.0.0'
|
||||
}
|
||||
|
||||
def get_response(url):
|
||||
response = requests.get(url = url, headers = headers)
|
||||
return response
|
||||
|
||||
def get_bv(page_num):
|
||||
bv_list = []
|
||||
link = 'https://api.bilibili.com/x/web-interface/wbi/search/type'
|
||||
data = {
|
||||
'category_id':'',
|
||||
'search_type': 'video',
|
||||
'ad_resource': '5654',
|
||||
'__refresh__': 'true',
|
||||
'_extra':'',
|
||||
'context':'',
|
||||
'page': page_num,
|
||||
'page_size': '42',
|
||||
'pubtime_begin_s': '0',
|
||||
'pubtime_end_s': '0',
|
||||
'from_source':'',
|
||||
'from_spmid': '333.337',
|
||||
'platform': 'pc',
|
||||
'highlight': '1',
|
||||
'single_column': '0',
|
||||
'keyword': '2024巴黎奥运会',
|
||||
'qv_id': 'Hz50pRYmKFQYlX2AorY3bJUTNJbLRwnX',
|
||||
'source_tag': '3',
|
||||
'gaia_vtoken':'',
|
||||
'dynamic_offset': '30',
|
||||
'web_location': '1430654',
|
||||
'w_rid': '1b994979977a17ee8010f012d43fa7b6',
|
||||
'wts': '1726501056'
|
||||
}
|
||||
link_data = requests.get(url = link, headers = headers, params = data).json()
|
||||
for index in link_data['data']['result']:
|
||||
bv_list.append(index['bvid'])
|
||||
# pprint(bv_list)
|
||||
return bv_list
|
||||
|
||||
def get_cid(bvid):
|
||||
url = f"https://api.bilibili.com/x/web-interface/view?bvid={bvid}"
|
||||
data = get_response(url).json()
|
||||
# pprint(data)
|
||||
return data['data']['cid']
|
||||
|
||||
def get_danmaku(cid):
|
||||
url = f"https://comment.bilibili.com/{cid}.xml"
|
||||
response = get_response(url)
|
||||
response.encoding = 'utf-8'
|
||||
# pprint(response.text)
|
||||
return response.text
|
||||
|
||||
def parse_danmaku(danmaku_xml):
|
||||
danmaku_list = re.findall('">(.*?)</d>',danmaku_xml)
|
||||
return danmaku_list
|
||||
|
||||
# 弹幕相关关键词
|
||||
ai_keywords = ["AI", "人工智能", "机器学习", "深度学习", "AI技术", "自动驾驶", "智能", "图像识别", "AI应用","智造"]
|
||||
|
||||
# 筛选与AI相关的弹幕
|
||||
def get_ai_danmaku(danmaku_list_all, ai_keywords):
|
||||
ai_related_danmaku = [danmaku for danmaku in danmaku_list_all if any(keyword in danmaku for keyword in ai_keywords)]
|
||||
return ai_related_danmaku
|
||||
|
||||
# 统计弹幕出现频次
|
||||
def count_danmaku(danmaku_list):
|
||||
danmaku_counter = Counter(danmaku_list)
|
||||
return danmaku_counter
|
||||
|
||||
# 获取前n个弹幕及其出现次数
|
||||
def get_top_n_danmaku(danmaku_counter, n=8):
|
||||
return danmaku_counter.most_common(n)
|
||||
|
||||
# 写入 Excel
|
||||
def write_to_excel(data, filename='danmaku_AI_top8.xlsx'):
|
||||
df = pd.DataFrame(data, columns=['弹幕内容', '出现次数'])
|
||||
df.to_excel(filename, index=False)
|
||||
|
||||
# 生成并显示词云图
|
||||
def get_wordcloud(danmaku_counter):
|
||||
wordcloud = WordCloud(
|
||||
width=800, # 宽度
|
||||
height=400, # 高度
|
||||
background_color='white', # 背景色
|
||||
max_words=100, # 显示的最大词语数量
|
||||
colormap='viridis', # 颜色映射
|
||||
font_path='msyh.ttc' # 指定字体路径,适应中文显示
|
||||
).generate_from_frequencies(danmaku_counter)
|
||||
plt.figure(figsize=(10, 5)) # 图像大小
|
||||
plt.imshow(wordcloud, interpolation="bilinear")
|
||||
plt.axis("off") # 关闭坐标轴显示
|
||||
plt.show()
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# 收集前300个视频的bvid
|
||||
videos = []
|
||||
page_num = 1
|
||||
while len(videos) < 300:
|
||||
bv_list = get_bv(str(page_num))
|
||||
videos.extend(bv_list)
|
||||
page_num += 1
|
||||
time.sleep(1) # 防止请求过于频繁
|
||||
|
||||
# 仅保留前300个视频号
|
||||
videos = videos[:300]
|
||||
|
||||
all_danmaku = []
|
||||
all_ai_related_danmaku = []
|
||||
|
||||
# 获取每个视频的弹幕并打印
|
||||
for bvid in videos:
|
||||
try:
|
||||
cid = get_cid(bvid)
|
||||
danmaku_xml = get_danmaku(cid)
|
||||
danmaku_list = parse_danmaku(danmaku_xml)
|
||||
|
||||
# 筛选AI相关弹幕
|
||||
ai_related_danmaku = get_ai_danmaku(danmaku_list, ai_keywords)
|
||||
all_ai_related_danmaku.extend(ai_related_danmaku)
|
||||
|
||||
for danmaku in danmaku_list:
|
||||
all_danmaku.append(danmaku)
|
||||
except Exception as e:
|
||||
print(f"Error fetching danmaku for video {bvid}: {e}")
|
||||
time.sleep(1) # 防止请求过于频繁
|
||||
|
||||
# 统计ai弹幕出现频次
|
||||
ai_danmaku_counter = count_danmaku(all_ai_related_danmaku)
|
||||
|
||||
# 获取前8个频次最高的弹幕
|
||||
top_8_danmaku = get_top_n_danmaku(ai_danmaku_counter, n=8)
|
||||
for dm,cnt in top_8_danmaku:
|
||||
print(dm)
|
||||
|
||||
# 输出到Excel
|
||||
write_to_excel(top_8_danmaku)
|
||||
|
||||
# 生成词云
|
||||
get_wordcloud(ai_danmaku_counter)
|
||||
|
||||
# print("弹幕统计结果已保存到Excel: danmaku_AI_top8.xlsx")
|
Loading…
Reference in new issue