parent
302ad4c6ac
commit
7244a42a4d
@ -0,0 +1,43 @@
|
||||
import librosa
|
||||
import librosa.display
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import torch
|
||||
from torchlibrosa.augmentation import SpecAugmentation
|
||||
|
||||
# 加载音频文件
|
||||
file_path = 'test.wav'
|
||||
y, sr = librosa.load(file_path, sr=None)
|
||||
|
||||
# 计算音频信号的 Short-Time Fourier Transform (STFT)
|
||||
D = librosa.stft(y)
|
||||
|
||||
# 计算 spectrogram
|
||||
spectrogram = librosa.amplitude_to_db(abs(D), ref=np.max)
|
||||
|
||||
# 绘制原始音频信号的频谱图
|
||||
plt.figure(figsize=(10, 6))
|
||||
librosa.display.specshow(spectrogram, sr=sr, x_axis='time', y_axis='log')
|
||||
plt.colorbar(format='%+2.0f dB')
|
||||
plt.title('origin spectrogram')
|
||||
plt.savefig('origin_spectrogram.png')
|
||||
|
||||
|
||||
# 转换为 PyTorch 张量
|
||||
spectrogram_tensor = torch.from_numpy(spectrogram).unsqueeze(0).unsqueeze(0)
|
||||
|
||||
# 应用 SpecAugmentation
|
||||
spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2, freq_drop_width=8, freq_stripes_num=2)
|
||||
augmented_spectrogram_tensor = spec_augmenter(spectrogram_tensor)
|
||||
|
||||
# 将增强的频谱图转换回 numpy 数组
|
||||
augmented_spectrogram = augmented_spectrogram_tensor.squeeze(0).squeeze(0).numpy()
|
||||
|
||||
|
||||
|
||||
# 绘制使用 SpecAugmentation 的频谱图
|
||||
plt.figure(figsize=(10, 6))
|
||||
librosa.display.specshow(augmented_spectrogram, sr=sr, x_axis='time', y_axis='log')
|
||||
plt.colorbar(format='%+2.0f dB')
|
||||
plt.title('after spec augment spectrogram')
|
||||
plt.savefig('spec_augment.png')
|
Loading…
Reference in new issue