You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

247 lines
6.0 KiB

#include <iostream>
#include <vector>
#include <string>
#include <queue>
#include <unordered_map>
#include <cmath>
using namespace std;
struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
class IsBalanced_Solution_Node {
public:
IsBalanced_Solution_Node(int min=INT_MAX,int max=INT_MIN,int high = 0,bool is_balance=true)
:_min(min),_max(max),_high(high),_is_balance(is_balance)
{}
int _min;
int _max;
int _high;
bool _is_balance;
};
IsBalanced_Solution_Node my_IsBalanced_Solution(TreeNode* root) {
//对于nullptr我们要不要呢
if (root == nullptr) {
return IsBalanced_Solution_Node();
}
IsBalanced_Solution_Node left = my_IsBalanced_Solution(root->left);
IsBalanced_Solution_Node right = my_IsBalanced_Solution(root->right);
int min = root->val;
int max = root->val;
int high = 1;
bool is_balance = true;
if (left._is_balance == false || right._is_balance == false
|| std::abs(left._high - right._high) > 1) {
is_balance = false;
}
if (left._high != 0) {
min = left._min < min ? left._min : ( min);
}
if (right._high != 0) {
max = right._max > max ? right._max : (max);
}
high = std::max(left._high, right._high) + 1;
return IsBalanced_Solution_Node(min, max, high, is_balance);
}
// 判断是不是平衡二叉树
bool IsBalanced_Solution(TreeNode* pRoot) {
// write code here
if (pRoot == nullptr) {
return true;
}
return my_IsBalanced_Solution(pRoot)._is_balance;
}
class lowestCommonAncestor_Node {
public:
lowestCommonAncestor_Node(TreeNode*root = nullptr)
:node(root){}
TreeNode* node;
};
TreeNode* sum_node = nullptr;
lowestCommonAncestor_Node my_lowestCommonAncestor(TreeNode* root, int p, int q) {
if (root == nullptr) {
return lowestCommonAncestor_Node();
}
lowestCommonAncestor_Node left = my_lowestCommonAncestor(root->left,p,q);
lowestCommonAncestor_Node right = my_lowestCommonAncestor(root->right, p, q);
//当前的接点有四种可能,
//当前的节点是p
//当前的节点是q
//当前的节点什么都不是,并且是公共的父节点
//当前的节点什么也不是
TreeNode* re = nullptr;
if (left.node == nullptr && right.node == nullptr) {
if (root->val == q || root->val == p) {
return lowestCommonAncestor_Node(root);
}
}
if (left.node != nullptr && right.node != nullptr) {
sum_node = root;
return lowestCommonAncestor_Node();
}
if (left.node != nullptr) {
if (root->val == p && left.node->val == q) {
sum_node = root;
return lowestCommonAncestor_Node();
}
if (root->val == q && left.node->val == p) {
sum_node = root;
return lowestCommonAncestor_Node();
}
re = left.node;
}
if (right.node != nullptr) {
if (root->val == p && right.node->val == q) {
sum_node = root;
return lowestCommonAncestor_Node();
}
if (root->val == q && right.node->val == p) {
sum_node = root;
return lowestCommonAncestor_Node();
}
re = right.node;
}
return lowestCommonAncestor_Node(re);
}
//二叉搜索树的最近公共祖先
int aalowestCommonAncestor(TreeNode* root, int p, int q) {
// write code here
//给定一颗二叉树,和两个节点,返回最近的那个公共的节点
//有两种方法可以求出这个答案,一个是直接递归求解出我们所需要的答案,
// 另一个就是采用并查集进行求解操作
//当我们先采用递归的方式求出公共的节点,再采用并查集的操作解出答案
sum_node = nullptr;
my_lowestCommonAncestor(root, p, q);
return sum_node->val;
}
class Union {
public:
void put(int father, int child) {
if (get_father(father) == -1) {
father_map[father] = father;
}
if (get_father(child) == -1) {
father_map[child] = child;
}
father_map[child] = get_father(father);
}
int get_father(int child) {
if (father_map.count(child) == 0) {
return -1;
}
queue<int>qu;
int father = child;
qu.push(father);
while (father != father_map[father]) {
father = father_map[father];
qu.push(father);
}
while (!qu.empty()) {
father_map[qu.front()] = father;
qu.pop();
}
return father;
}
unordered_map<int, int>father_map;
};
int re = -1;
Union un;
void my_union_lowestCommonAncestor(TreeNode* root, int p, int q) {
if (re != -1) {
return;
}
if (root != nullptr) {
//每次只有在递归完左树之后,就进行右树的操作,
//右树递归完之后就将左右树和当前节点合并
my_union_lowestCommonAncestor(root->left, q, p);
if (root->left != nullptr) {
un.put(root->val, root->left->val);
}
if (root->val == q && un.get_father(p) != -1) {
re = un.get_father(p);
}
if(root->val == p && un.get_father(q) != -1) {
re = un.get_father(q);
}
my_union_lowestCommonAncestor(root->right, q, p);
if (root->right != nullptr) {
un.put(root->val, root->right->val);
}
if (root->val == q && un.get_father(p) != -1) {
re = un.get_father(p);
}
if(root->val == p && un.get_father(q) != -1) {
re = un.get_father(q);
}
}
}
//采用并查集的方式进行操作
//二叉搜索树的最近公共祖先
int lowestCommonAncestor(TreeNode* root, int o1, int o2) {
// write code here
my_union_lowestCommonAncestor(root, o1, o2);
return re;
}
void my_Serialize(TreeNode* root, string& str) {
if (root == nullptr) {
str.append("#");
}
else {
str.append('{'+ to_string(root->val) + '}');
my_Serialize(root->left, str);
my_Serialize(root->right, str);
}
}
//序列化二叉树
char* Serialize(TreeNode* root) {
string str;
my_Serialize(root, str);
return const_cast<char*>(str.c_str());
}
TreeNode* my_Deserialize( string& str, int& index) {
if (str[index] == '#') {
index++;
return nullptr;
}
index = str.find('{', index);
index = index + 1;
int next_index = str.find('}', index);
TreeNode* cur = new TreeNode(atoi(str.substr(index, next_index).c_str()));
index = next_index + 1;
cur->left = my_Deserialize(str, index);
cur->right = my_Deserialize(str, index);
}
//反序列化二叉树
TreeNode* Deserialize(char* str) {
int index = 0;
string ss(str);
return my_Deserialize( ss,index);
}
int main() {
TreeNode* root = new TreeNode(1);
root->left = new TreeNode(2);
root->right = new TreeNode(3);
return 0;
}