forked from pi7mcrg2k/opcomplex
parent
75a99273b2
commit
046c4f7072
@ -0,0 +1,140 @@
|
||||
#include <iostream>
|
||||
#include<arm_neon.h>
|
||||
#include <time.h>
|
||||
|
||||
#define IDx(n) ((n) % 3)
|
||||
|
||||
#define H 600
|
||||
#define W 600
|
||||
|
||||
|
||||
void applyGaussianBlur(float src[][W], float dst[][W], int h, int w, float kernel[3][3]) {
|
||||
for (int i = 1; i < h -1;++i) {
|
||||
for (int j = 1; j < w - 1; ++j) {
|
||||
dst[i][j] =src[i - 1][j - 1] * kernel[0][0] + src[i - 1][j] * kernel[0][1] + src[i - 1][j + 1] * kernel[0][2] +
|
||||
src[i][j - 1] * kernel[1][0] + src[i][j] * kernel[1][1] + src[i][j + 1] * kernel[1][2] +
|
||||
src[i + 1][j - 1] * kernel[2][0] + src[i + 1][j] * kernel[2][1] + src[i + 1][j + 1] * kernel[2][2];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void applySeparableGaussianBlur(float src[][W], float dst[][W], int h, int w, float kx[3], float ky[3]) {
|
||||
float buf[3][W+3];
|
||||
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 1; j< w - 1; ++j) {
|
||||
buf[i][j] = src[i][j - 1] * kx[0] + src[i][j] * kx[1] + src[i][j + 1] * kx[2];
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 1; i < h - 1; ++i) {
|
||||
//计算当前行的行内卷积
|
||||
for (int j = 1; j< w- 1;++j) {
|
||||
buf[IDx(i + 1)][j] = src[i + 1][j - 1] * kx[0] + src[i + 1][j] * kx[1] + src[i + 1][j + 1] * kx[2];
|
||||
}
|
||||
//进行行间的卷积得到最终像素值
|
||||
for (int j = 1; j< w - 1; ++j) {
|
||||
dst[i][j] = buf[IDx(i - 1)][j] * ky[0] + buf[IDx(i)][j] * ky[1] + buf[IDx(i + 1)][j] * ky[2];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void applyOptimizedSeparableGaussianBlur(float src[][W], float dst[][W], int h, int w, float kx[3], float ky[3]) {
|
||||
|
||||
float buf[3][W+3];
|
||||
|
||||
float32x4_t kx_vec = vld1q_f32(kx); // 加载 kx
|
||||
float32x4_t ky_vec = vld1q_f32(ky); // 加载 ky
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 1; j < w - 1; j += 4) {
|
||||
float32x4_t left = vld1q_f32(&src[i][j - 1]);
|
||||
float32x4_t mid = vld1q_f32(&src[i][j]);
|
||||
float32x4_t right = vld1q_f32(&src[i][j + 1]);
|
||||
|
||||
float32x4_t result = vmulq_lane_f32(left, vget_low_f32(kx_vec), 0); // kx[0] * left
|
||||
result = vmlaq_lane_f32(result, mid, vget_low_f32(kx_vec), 1);// + kx[1] * mid
|
||||
result = vmlaq_lane_f32(result, right, vget_high_f32(kx_vec), 0);// + kx[2] * right
|
||||
|
||||
vst1q_f32(&buf[i][j], result);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 1; i < h - 1; ++i) {
|
||||
//计算当前行的行内卷积
|
||||
for (int j = 1; j< w- 1;++j) {
|
||||
buf[IDx(i + 1)][j] = src[i + 1][j - 1] * kx[0] + src[i + 1][j] * kx[1] + src[i + 1][j + 1] * kx[2];
|
||||
/*
|
||||
float32x4_t left = vld1q_f32(&src[i+1][j - 1]);
|
||||
float32x4_t mid = vld1q_f32(&src[i+1][j]);
|
||||
float32x4_t right = vld1q_f32(&src[i + 1][j + 1]);
|
||||
|
||||
float32x4_t result = vmulq_lane_f32(left, vget_low_f32(kx_vec), 0); // kx[0] * left
|
||||
result = vmlaq_lane_f32(result, mid, vget_low_f32(kx_vec), 1);// + kx[1] * mid
|
||||
result = vmlaq_lane_f32(result, right, vget_high_f32(kx_vec), 0);// + kx[2] * right
|
||||
|
||||
vst1q_f32(&buf[IDx(i + 1)][j], result);
|
||||
*/
|
||||
}
|
||||
//进行行间的卷积得到最终像素值
|
||||
for (int j = 1; j< w - 1; ++j) {
|
||||
|
||||
|
||||
dst[i][j] = buf[IDx(i - 1)][j] * ky[0] + buf[IDx(i)][j] * ky[1] + buf[IDx(i + 1)][j] * ky[2];
|
||||
/*
|
||||
float32x4_t left = vld1q_f32(&buf[IDx(i - 1)][j]);
|
||||
float32x4_t mid = vld1q_f32(&buf[IDx(i)][j]);
|
||||
float32x4_t right = vld1q_f32(&buf[IDx(i + 1)][j]);
|
||||
|
||||
float32x4_t result = vmulq_lane_f32(left, vget_low_f32(ky_vec), 0); // kx[0] * left
|
||||
result = vmlaq_lane_f32(result, mid, vget_low_f32(ky_vec), 1);// + kx[1] * mid
|
||||
result = vmlaq_lane_f32(result, right, vget_high_f32(ky_vec), 0);// + kx[2] * right
|
||||
|
||||
vst1q_f32(&dst[i][j], result);
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
int main() {
|
||||
float src_t[H][W]={0};
|
||||
float dst1[H][W]={0};
|
||||
float dst2[H][W]={0};
|
||||
float dst3[H][W]={0};
|
||||
|
||||
float kernel[3][3] = {
|
||||
{1.0f / 16, 2.0f / 16, 1.0f / 16},
|
||||
{2.0f / 16, 4.0f / 16, 2.0f / 16},
|
||||
{1.0f / 16, 2.0f / 16, 1.0f / 16}
|
||||
};
|
||||
|
||||
float kx[3] = {0.25, 0.5, 0.25};
|
||||
float ky[3] = {0.25, 0.5, 0.25};
|
||||
|
||||
for (auto & i : src_t) {
|
||||
for (float & j : i) {
|
||||
srand((unsigned)time(NULL));
|
||||
j=0.01*rand();
|
||||
}
|
||||
}
|
||||
|
||||
clock_t start = clock();
|
||||
applyGaussianBlur(src_t, dst1, H, W, kernel);
|
||||
clock_t end = clock();
|
||||
printf("耗时%lf秒\n",(double)(end-start)/CLOCKS_PER_SEC);
|
||||
|
||||
start = clock();
|
||||
applySeparableGaussianBlur(src_t, dst2, H, W, kx,ky);
|
||||
end = clock();
|
||||
printf("耗时%lf秒\n",(double)(end-start)/CLOCKS_PER_SEC);
|
||||
|
||||
start = clock();
|
||||
applyOptimizedSeparableGaussianBlur(src_t, dst3, H, W, kx,ky);
|
||||
end = clock();
|
||||
printf("耗时%lf秒\n",(double)(end-start)/CLOCKS_PER_SEC);
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in new issue