#include #include #include #define IDx(n) ((n) % 3) #define H 600 #define W 600 void applyGaussianBlur(float src[][W], float dst[][W], int h, int w, float kernel[3][3]) { for (int i = 1; i < h -1;++i) { for (int j = 1; j < w - 1; ++j) { dst[i][j] =src[i - 1][j - 1] * kernel[0][0] + src[i - 1][j] * kernel[0][1] + src[i - 1][j + 1] * kernel[0][2] + src[i][j - 1] * kernel[1][0] + src[i][j] * kernel[1][1] + src[i][j + 1] * kernel[1][2] + src[i + 1][j - 1] * kernel[2][0] + src[i + 1][j] * kernel[2][1] + src[i + 1][j + 1] * kernel[2][2]; } } } void applySeparableGaussianBlur(float src[][W], float dst[][W], int h, int w, float kx[3], float ky[3]) { float buf[3][W+3]; for (int i = 0; i < 2; ++i) { for (int j = 1; j< w - 1; ++j) { buf[i][j] = src[i][j - 1] * kx[0] + src[i][j] * kx[1] + src[i][j + 1] * kx[2]; } } for (int i = 1; i < h - 1; ++i) { //计算当前行的行内卷积 for (int j = 1; j< w- 1;++j) { buf[IDx(i + 1)][j] = src[i + 1][j - 1] * kx[0] + src[i + 1][j] * kx[1] + src[i + 1][j + 1] * kx[2]; } //进行行间的卷积得到最终像素值 for (int j = 1; j< w - 1; ++j) { dst[i][j] = buf[IDx(i - 1)][j] * ky[0] + buf[IDx(i)][j] * ky[1] + buf[IDx(i + 1)][j] * ky[2]; } } } void applyOptimizedSeparableGaussianBlur(float src[][W], float dst[][W], int h, int w, float kx[3], float ky[3]) { float buf[3][W+3]; float32x4_t kx_vec = vld1q_f32(kx); // 加载 kx float32x4_t ky_vec = vld1q_f32(ky); // 加载 ky for (int i = 0; i < 2; ++i) { for (int j = 1; j < w - 1; j += 4) { float32x4_t left = vld1q_f32(&src[i][j - 1]); float32x4_t mid = vld1q_f32(&src[i][j]); float32x4_t right = vld1q_f32(&src[i][j + 1]); float32x4_t result = vmulq_lane_f32(left, vget_low_f32(kx_vec), 0); // kx[0] * left result = vmlaq_lane_f32(result, mid, vget_low_f32(kx_vec), 1);// + kx[1] * mid result = vmlaq_lane_f32(result, right, vget_high_f32(kx_vec), 0);// + kx[2] * right vst1q_f32(&buf[i][j], result); } } for (int i = 1; i < h - 1; ++i) { //计算当前行的行内卷积 for (int j = 1; j< w- 1;++j) { buf[IDx(i + 1)][j] = src[i + 1][j - 1] * kx[0] + src[i + 1][j] * kx[1] + src[i + 1][j + 1] * kx[2]; /* float32x4_t left = vld1q_f32(&src[i+1][j - 1]); float32x4_t mid = vld1q_f32(&src[i+1][j]); float32x4_t right = vld1q_f32(&src[i + 1][j + 1]); float32x4_t result = vmulq_lane_f32(left, vget_low_f32(kx_vec), 0); // kx[0] * left result = vmlaq_lane_f32(result, mid, vget_low_f32(kx_vec), 1);// + kx[1] * mid result = vmlaq_lane_f32(result, right, vget_high_f32(kx_vec), 0);// + kx[2] * right vst1q_f32(&buf[IDx(i + 1)][j], result); */ } //进行行间的卷积得到最终像素值 for (int j = 1; j< w - 1; ++j) { dst[i][j] = buf[IDx(i - 1)][j] * ky[0] + buf[IDx(i)][j] * ky[1] + buf[IDx(i + 1)][j] * ky[2]; /* float32x4_t left = vld1q_f32(&buf[IDx(i - 1)][j]); float32x4_t mid = vld1q_f32(&buf[IDx(i)][j]); float32x4_t right = vld1q_f32(&buf[IDx(i + 1)][j]); float32x4_t result = vmulq_lane_f32(left, vget_low_f32(ky_vec), 0); // kx[0] * left result = vmlaq_lane_f32(result, mid, vget_low_f32(ky_vec), 1);// + kx[1] * mid result = vmlaq_lane_f32(result, right, vget_high_f32(ky_vec), 0);// + kx[2] * right vst1q_f32(&dst[i][j], result); */ } } } int main() { float src_t[H][W]={0}; float dst1[H][W]={0}; float dst2[H][W]={0}; float dst3[H][W]={0}; float kernel[3][3] = { {1.0f / 16, 2.0f / 16, 1.0f / 16}, {2.0f / 16, 4.0f / 16, 2.0f / 16}, {1.0f / 16, 2.0f / 16, 1.0f / 16} }; float kx[3] = {0.25, 0.5, 0.25}; float ky[3] = {0.25, 0.5, 0.25}; for (auto & i : src_t) { for (float & j : i) { srand((unsigned)time(NULL)); j=0.01*rand(); } } clock_t start = clock(); applyGaussianBlur(src_t, dst1, H, W, kernel); clock_t end = clock(); printf("耗时%lf秒\n",(double)(end-start)/CLOCKS_PER_SEC); start = clock(); applySeparableGaussianBlur(src_t, dst2, H, W, kx,ky); end = clock(); printf("耗时%lf秒\n",(double)(end-start)/CLOCKS_PER_SEC); start = clock(); applyOptimizedSeparableGaussianBlur(src_t, dst3, H, W, kx,ky); end = clock(); printf("耗时%lf秒\n",(double)(end-start)/CLOCKS_PER_SEC); return 0; }