From 78aff253ba4912366edeb2799a4f81c769b631d2 Mon Sep 17 00:00:00 2001
From: pmg4s7lpo <3118629464@qq.com>
Date: Wed, 7 Jan 2026 23:53:38 +0800
Subject: [PATCH] Delete 'eval_hle.py'
---
eval_hle.py | 713 ----------------------------------------------------
1 file changed, 713 deletions(-)
delete mode 100644 eval_hle.py
diff --git a/eval_hle.py b/eval_hle.py
deleted file mode 100644
index 263af1d..0000000
--- a/eval_hle.py
+++ /dev/null
@@ -1,713 +0,0 @@
-import os
-import random
-import time
-import json
-import requests
-import asyncio
-import subprocess
-from tqdm import tqdm
-from transformers import AutoTokenizer
-import sys
-REPO_PATH = os.getenv("REPO_PATH")
-sys.path.append(REPO_PATH)
-from LLM_CALL import get_llm_response
-import multiprocessing as mp
-import argparse
-import logging
-from openai import OpenAI
-logging.disable(logging.CRITICAL)
-
-MODEL_NAME = None
-my_output_dir = None
-MAX_ROUNDS = None
-MODEL_TYPE = None
-MODEL_MAPPING = None
-TOOL_PRICING = None
-vllm_model_configs = None
-with open('tools.json') as f:
- raw_tools = json.load(f)
-tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
-# Provide your api key
-oss_client = OpenAI(
- base_url = "https://integrate.api.nvidia.com/v1",
- api_key = os.getenv("OSS_KEY")
-)
-
-MODEL_MAPPING = {
- "search-1": "gpt-5",
- "search-2": "gpt-5-mini",
- "search-3": "Qwen/Qwen3-32B",
- "reasoner-1": "gpt-5",
- "reasoner-2": "gpt-5-mini",
- "reasoner-3": "Qwen/Qwen2.5-Coder-32B-Instruct",
- "answer-math-1": "Qwen/Qwen2.5-Math-72B-Instruct",
- "answer-math-2": "Qwen/Qwen2.5-Math-7B-Instruct",
- "answer-1": "gpt-5",
- "answer-2": "gpt-5-mini",
- "answer-3": "meta-llama/Llama-3.3-70B-Instruct",
- "answer-4": "Qwen/Qwen3-32B"
-}
-TOOL_PRICING = {
- "gpt-5": {
- "input_tokens_per_million": 1.25/10000000,
- "output_tokens_per_million": 10/1000000
- },
- "gpt-5-mini": {
- "input_tokens_per_million": 0.25/10000000,
- "output_tokens_per_million": 2/1000000
- },
- "Qwen/Qwen3-32B": {
- "input_tokens_per_million": 0.8/1000000,
- "output_tokens_per_million": 0.8/1000000
- },
- "Qwen/Qwen2.5-Coder-32B-Instruct": {
- "input_tokens_per_million": 0.8/1000000,
- "output_tokens_per_million": 0.8/1000000
- },
- "Qwen/Qwen2.5-Math-72B-Instruct": {
- "input_tokens_per_million": 0.9/1000000,
- "output_tokens_per_million": 0.9/1000000
- },
- "Qwen/Qwen2.5-Math-7B-Instruct": {
- "input_tokens_per_million": 0.2/1000000,
- "output_tokens_per_million": 0.2/1000000
- },
- "meta-llama/Llama-3.3-70B-Instruct": {
- "input_tokens_per_million": 0.9/1000000,
- "output_tokens_per_million": 0.9/1000000
- },
- "Qwen/Qwen3-8B": {
- "input_tokens_per_million": 0.2/1000000,
- "output_tokens_per_million": 0.2/1000000
- },
- "code_interpreter_per_second": 0.0000083,
- "tavily": {
- "search": 0.01,
- "extract": 0.002
- },
-}
-ALL_TOOLS = {
- "enhance_reasoning": {
- 'model': ["reasoner-1", "reasoner-2", "reasoner-3"]
- },
- "answer": {
- 'model': ["answer-math-1", "answer-math-2", "answer-1", "answer-2", "answer-3", "answer-4"]
- },
- "search": {
- "model": ["search-1", "search-2", "search-3"]
- },
-}
-
-def cut_seq(seq,l):
- if len(seq)==0:
- return {
- 'effective_length': 0,
- 'string_after_cut': ''
- }
- token_ids = tokenizer(seq)['input_ids']
- rs = tokenizer.batch_decode(token_ids[-l:], skip_special_tokens=True)
- return {
- 'effective_length': len(token_ids),
- 'string_after_cut': ''.join(rs)
- }
-
-def call_tool(arguments):
- start_time = time.time()
- if arguments['tool']=='enhance_reasoning':
- supported_models = [MODEL_MAPPING[m] for m in ALL_TOOLS['enhance_reasoning']['model']]
- assert arguments['model'] in supported_models,f"Model {arguments['model']} is not supported in enhance_reasoning. Support models: {supported_models}"
- prompt = arguments['context_str'].strip()+'\n\n'
- prompt += f"Question: {arguments['problem']}\nInstead of directly answering the question, please write additional python code that will give intermidiate results after execution. Wrap the code within ```python and ```. The code should be self-contained with all the import and initialization."
- model_name = arguments['model']
- response = ''
- if 'gpt-5' in model_name.lower():
- response = get_llm_response(model=model_name,messages=prompt,return_raw_response=True,temperature=1,max_length=40000)
- elif 'qwen2.5-coder' in model_name.lower():
- response = get_llm_response(model=model_name,messages=prompt,return_raw_response=True,model_type='vllm',max_length=8000,temperature=0.2,model_config=arguments['vllm_model_configs'][model_name],model_config_path=arguments['vllm_model_configs']['vllm_model_config_path'],model_config_idx=arguments['eid'])
- if isinstance(response,str):
- response = ''
- while not response:
- try:
- response = oss_client.chat.completions.create(
- model="nvdev/qwen/qwen2.5-coder-32b-instruct",
- messages=[{"role":"user","content":prompt}],temperature=0.2,
- top_p=0.7,
- max_tokens=8000,
- )
- except Exception as qwen_error:
- time.sleep(3)
- if isinstance(response,str):
- arguments['generated_code'] = ''
- arguments['exec_result'] = ''
- return arguments
- try:
- generated_code = response.choices[0].message.content.split('```python')[-1].split('```')[0]
- except:
- generated_code = ''
- if generated_code=='':
- arguments['generated_code'] = ''
- arguments['exec_result'] = ''
- return arguments
- code_path = str(os.path.join(arguments['cur_output_dir'],f'exec_code_{arguments["id"]}.py'))
- with open(code_path,'w') as f:
- f.write(generated_code)
- exec_result = ''
- exec_start = time.time()
- try:
- exec_result = subprocess.run(['python', code_path], timeout=60, capture_output=True, text=True)
- exec_time = time.time()-exec_start
- exec_result = exec_result.stdout
- with open(os.path.join(arguments['cur_output_dir'],f'exec_out_{arguments["id"]}.txt'),'w') as f:
- f.write(exec_result)
- except Exception as e:
- pass
- exec_time = time.time() - exec_start
- arguments['generated_code'] = generated_code
- arguments['exec_result'] = exec_result
- return arguments
-
- elif arguments['tool']=='answer':
- prompt = arguments['context_str'].strip()+'\n\nProblem:\n'+arguments['problem']
- response_str = ''
- pred = ''
-
- if 'qwen3' in arguments['model'].lower():
- model_name = arguments['model']
- messages = [
- {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{}."},
- {"role": "user", "content": prompt}
- ]
- arguments['messages'] = messages
- response = get_llm_response(model=model_name,messages=messages,return_raw_response=True,model_type='vllm',max_length=8000,temperature=0.2,model_config=arguments['vllm_model_configs'][model_name],model_config_path=arguments['vllm_model_configs']['vllm_model_config_path'],model_config_idx=arguments['eid'])
- if isinstance(response,str):
- arguments['response'] = ''
- arguments['pred'] = ''
- arguments['correctness'] = False
- return arguments
- response_str = response.choices[0].message.content
- if not isinstance(response_str,str) or not '\\boxed{' in response_str:
- pred = ''
- else:
- pred_components = response.choices[0].message.content.split('\\boxed{')[-1].split('}')[:-1]
- pred = '}'.join(pred_components).strip()
- elif 'qwen2.5-math' in arguments['model'].lower():
- model_name = arguments['model']
- messages = [
- {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{}."},
- {"role": "user", "content": prompt}
- ]
- arguments['messages'] = messages
- response = get_llm_response(model=model_name,messages=messages,return_raw_response=True,model_type='vllm',max_length=2000,temperature=0.2,model_config=arguments['vllm_model_configs'][model_name],model_config_path=arguments['vllm_model_configs']['vllm_model_config_path'],model_config_idx=arguments['eid'])
- if isinstance(response,str):
- arguments['response'] = ''
- arguments['pred'] = ''
- arguments['correctness'] = False
- return arguments
- response_str = response.choices[0].message.content
- if not isinstance(response_str,str) or not '\\boxed{' in response_str:
- pred = ''
- else:
- pred_components = response.choices[0].message.content.split('\\boxed{')[-1].split('}')[:-1]
- pred = '}'.join(pred_components).strip()
- elif 'gpt-5' in arguments['model'].lower():
- model_name = arguments['model']
- prompt += ("\n\nTake a deep breath and think hard with high reasoning, wrap the thoughts within and , and wrap only the exact answer without any explanation within and ."
- "Output using the following format:\n\n...\n\n\n...\n")
- arguments['messages'] = prompt
- response = get_llm_response(model=model_name,messages=prompt,return_raw_response=True,max_length=40000)
- if isinstance(response,str):
- arguments['response'] = ''
- arguments['pred'] = ''
- arguments['correctness'] = False
- return arguments
- response_str = response.choices[0].message.content
- if isinstance(response_str,str):
- pred = response.choices[0].message.content.split('')[-1].split('')[0].strip()
- else:
- pred = ''
- elif 'llama-3.3' in arguments['model'].lower():
- model_name = arguments['model']
- prompt += "\nWrap the thinking process and explanation between and and wrap only the exact answer without any explanation within and ."
- arguments['messages'] = prompt
- response = get_llm_response(model=model_name,messages=prompt,return_raw_response=True,model_type='vllm',max_length=40000,temperature=0.2,model_config=arguments['vllm_model_configs'][model_name],model_config_path=arguments['vllm_model_configs']['vllm_model_config_path'],model_config_idx=arguments['eid'])
- if isinstance(response,str):
- response = ''
- while not response:
- try:
- response = client.chat.completions.create(
- model="nvdev/meta/llama-3.3-70b-instruct",
- messages=[{"role":"user","content":prompt}],temperature=0.2,
- top_p=0.7,
- max_tokens=40000,
- )
- except Exception as llama_error:
- time.sleep(3)
- if isinstance(response,str):
- arguments['response'] = ''
- arguments['pred'] = ''
- arguments['correctness'] = False
- return arguments
- response_str = response.choices[0].message.content
- if isinstance(response_str,str):
- pred = response.choices[0].message.content.split('')[-1].split('')[0].strip()
- else:
- pred = ''
-
- if pred.strip()=='' or len(pred.split(' '))>500:
- correctness = False
- elif pred.strip().lower()==arguments['answer'].strip().lower():
- correctness = True
- else:
- eval_prompt = (f"Question: {arguments['problem']}\n\n"
- f"Student answer: {pred}\n\n"
- f"Reference answer: {arguments['answer']}\n\n"
- "Assume that the reference answer is correct. Output True if the student answer matches the reference answer. Output False if the student answer does not match the reference answer.")
- eval_response = get_llm_response(model='gpt-5',messages=eval_prompt,temperature=1)
- eval_result = eval_response.split('')[-1].split('')[0]
- if eval_result.lower()=='true':
- correctness = True
- else:
- correctness = False
- arguments['response'] = response_str
- arguments['pred'] = pred
- arguments['correctness'] = correctness
- return arguments
-
- elif arguments['tool']=='search':
- contents = []
- prompt = arguments['context_str'].strip()+'\n\n'
- prompt += f"Question: {arguments['problem']}\nInstead of directly answering the question, please write a query to search for a piece of relevant and missing information. The query should be a few key words about the information to search or a short sentence. Wrap the query within and ."
- cur_query_writer = arguments['model']
- query_to_call = None
- if 'gpt-5' in cur_query_writer.lower():
- response = get_llm_response(model=cur_query_writer,messages=prompt,return_raw_response=True,temperature=1,max_length=40000)
- if isinstance(response,str) or not response:
- query_to_call = arguments['problem']
- else:
- query_to_call = response.choices[0].message.content.split('')[-1].split('')[0]
- elif 'qwen3' in cur_query_writer.lower():
- response = get_llm_response(model=cur_query_writer,messages=prompt,return_raw_response=True,model_type='vllm',max_length=8000,temperature=0.2,model_config=arguments['vllm_model_configs'][cur_query_writer],model_config_path=arguments['vllm_model_configs']['vllm_model_config_path'],model_config_idx=arguments['eid'])
- if isinstance(response,str):
- query_to_call = arguments['problem']
- else:
- query_to_call = response.choices[0].message.content.split('')[-1].split('')[0]
- if query_to_call is None or len(query_to_call)<5:
- pass
- else:
- assert len(query_to_call)>5,f"{query_to_call}"
- payload = {
- "queries": [query_to_call[:390]],
- "topk": 50,
- "return_scores": True,
- "eid": arguments['id']
- }
- results = None
- all_vllm_model_configs = arguments['vllm_model_configs']
- search_try_count = 0
- while not results:
- search_try_count += 1
- try:
- cur_model_config = random.choice(all_vllm_model_configs['retrieval'])
- results = requests.post(f'http://{cur_model_config["ip_addr"]}:{cur_model_config["port"]}/retrieve', json=payload).json()
- except Exception as search_error:
- time.sleep(3)
- if results:
- for r in results[0]:
- if 'content' in r['document']:
- contents.append(r['document']['content'])
- elif 'contents' in r['document']:
- contents.append(r['document']['contents'])
- arguments['query'] = query_to_call
- arguments['search_results_data'] = contents
- if 'tokenizer' in arguments:
- arguments.pop('tokenizer')
- return arguments
-
-import asyncio
-import contextlib
-from concurrent.futures import ThreadPoolExecutor
-from typing import Iterable, Tuple, Any, Callable
-
-# task_list is an iterable of (func, arg) pairs
-async def run_all(
- task_list: Iterable[Tuple[Callable[[Any], Any], Any]],
- concurrency: int = 2,
- progress: bool = False,
- return_exceptions: bool = False,
-):
- loop = asyncio.get_running_loop()
- sem = asyncio.Semaphore(concurrency)
-
- # create the executor sized to your concurrency gate
- with ThreadPoolExecutor(max_workers=concurrency) as executor:
- # wrap each task so it obeys the semaphore
- async def run_one(idx: int, func: Callable, arg: Any):
- async with sem:
- if asyncio.iscoroutinefunction(func):
- res = await func(arg)
- else:
- res = await loop.run_in_executor(executor, func, arg)
- return idx, res, None
-
- task_list = list(task_list)
- tasks = [asyncio.create_task(run_one(i, f, a))
- for i, (f, a) in enumerate(task_list)]
-
- results = [None] * len(tasks)
-
- if progress:
- from tqdm import tqdm
- pbar = tqdm(total=len(tasks))
- else:
- pbar = None
-
- try:
- # update progress as tasks complete
- for fut in asyncio.as_completed(tasks):
- idx, res, err = await fut
- if err is None:
- results[idx] = res
- else:
- if return_exceptions:
- results[idx] = err
- else:
- # cancel remaining, then re-raise the first error
- for t in tasks:
- t.cancel()
- with contextlib.suppress(Exception):
- await asyncio.gather(*tasks, return_exceptions=True)
- raise err
- if pbar:
- pbar.update(1)
- finally:
- if pbar:
- pbar.close()
-
- return results
-
-def run_single(e):
- if os.path.isfile(os.path.join(my_output_dir,f"{e['id']}.json")):
- return
- doc_list = []
- code_list = []
- attempt_list = []
- exp_start_time = time.time()
- problem = e['question']
- user_problem = problem
- answer = e['answer']
- all_tool_calls = []
- final_correct = False
- final_answer_model = None
- final_pred = ''
- all_tool_responses = {}
- all_message_responses = {}
- used_tools = []
- for step in range(MAX_ROUNDS):
- cur_output_dir = os.path.join(my_output_dir,f"step_{step}")
- if not os.path.isdir(os.path.join(cur_output_dir,'tool_return')):
- try:
- os.makedirs(os.path.join(cur_output_dir,'tool_return'))
- except:
- pass
- tools = []
- for t in raw_tools:
- tools.append(t)
- doc_str = ''
- for doc_idx, doc in enumerate(doc_list):
- doc_str += f"Doc {doc_idx+1}: {doc[:1200]} ...\n\n"
- code_str = ''
- for code_idx, code_piece in enumerate(code_list):
- code_str += f"```python\n{code_piece['code']}\n```\n\n```output\n{code_piece['output']}\n```\n\n"
- attempt_str = ''
- for attempt_idx, attempt in enumerate(attempt_list):
- attempt_str += f"Attempt{attempt_idx+1} answer by {attempt['model']}: {attempt['answer']}\n"
- str_cut = cut_seq(seq=attempt_str,l=8000)
- attempt_str = str_cut['string_after_cut']
- if not attempt_str.startswith('Attempt') and len(attempt_str)>0:
- attempt_str = 'Attempt answer: '+attempt_str
- str_cut = cut_seq(seq=code_str+attempt_str,l=12000)
- code_attempt_str = str_cut['string_after_cut']
- code_attempt_str_len = str_cut['effective_length']
- if not code_attempt_str.startswith('```') and len(code_attempt_str)>0:
- code_attempt_str = '```\n'+code_attempt_str
- doc_flag = False
- problem_length = len(tokenizer(problem)['input_ids'])
- if code_attempt_str_len<27000-problem_length:
- if code_attempt_str:
- context_str = cut_seq(seq=doc_str+"\npython code and execution outputs:\n"+code_attempt_str,l=27000-problem_length)
- else:
- context_str = cut_seq(seq=doc_str,l=27000-problem_length)
- context_str = context_str['string_after_cut']
- if len(doc_str)>0:
- doc_flag = True
- context_str = 'Documents:\n'+context_str
- else:
- context_str = code_attempt_str
-
- removed_tool = None
- if len(used_tools)>1 and used_tools[-1]==used_tools[-2]:
- updated_tools = []
- removed_tool = used_tools[-1]
- for t in tools:
- if t['function']['name']!=used_tools[-1]:
- updated_tools.append(t)
- else:
- updated_tools = tools
- cur_tool_set = [t['function']['name'] for t in updated_tools]
- chat = [
- {"role": "system", "content": "You are good at using tools."},
- {"role": "user", "content": f"Problem: {problem}\n\n{context_str}\n\nChoose an appropriate tool.'"}
- ]
- response = get_llm_response(model=MODEL_NAME,messages=chat,return_raw_response=True,model_type='vllm',model_config=vllm_model_configs[MODEL_NAME],temperature=1,max_length=12000,tools=tools,model_config_path=vllm_model_configs['vllm_model_config_path'],model_config_idx=e['eid'])
- cache_idx = 0
- while os.path.isfile(f"input_output/{cache_idx}.json"):
- cache_idx += 1
- if isinstance(response,str):
- continue
- tool_calls = response.choices[0].message.tool_calls
- cache_tool_calls = []
- for one_tool_call in tool_calls:
- tool_name = one_tool_call.function.name
- try:
- tool_arguments = json.loads(one_tool_call.function.arguments)
- except:
- pass
- cache_tool_calls.append({
- 'tool_name': tool_name,
- 'tool_arguments': tool_arguments
- })
- message_dict = {
- 'content': response.choices[0].message.content,
- 'tool_calls': cache_tool_calls
- }
- if len(tool_calls)==0:
- all_tool_calls.append(f'342 invalid tool calls {tool_calls}')
- continue
- tool_call_list = []
- cur_tool_calls = []
- processed_tools = set()
- for one_tool_call in tool_calls:
- tool_name = one_tool_call.function.name
- try:
- tool_arguments = json.loads(one_tool_call.function.arguments)
- except:
- pass
- if not tool_name in ALL_TOOLS:
- cur_tool_calls.append(f'350 invalid tool calls {tool_calls}')
- continue
- func_signature = ALL_TOOLS[tool_name]
- valid_tool_call = True
- for parameter_name,parameter_values in func_signature.items():
- if (not parameter_name in tool_arguments):
- valid_tool_call = False
- if (not tool_arguments[parameter_name] in parameter_values) and parameter_values!='any':
- valid_tool_call = False
- if not valid_tool_call:
- cur_tool_calls.append(f'360 invalid tool calls {tool_calls}')
- continue
-
- if tool_name in processed_tools:
- continue
- processed_tools.add(tool_name)
- tool_call = {
- 'name': tool_name,
- 'arguments': tool_arguments
- }
- cur_tool_calls.append([tool_call])
- expert_model_to_call = MODEL_MAPPING[tool_arguments['model']]
-
- call_tool_argument = None
- used_tools.append(tool_name)
- if tool_name=='enhance_reasoning':
- if 'qwen2.5-coder' in expert_model_to_call.lower():
- max_code_length = 16000
- max_context_length = 24000
- elif 'gpt-5' in expert_model_to_call.lower():
- max_code_length = 40000
- max_context_length = 120000
- doc_str = ''
- for doc_idx, doc in enumerate(doc_list):
- if 'qwen2.5-coder' in expert_model_to_call.lower():
- doc_str += f"Doc {doc_idx+1}: {doc[:1000]}\n\n"
- else:
- doc_str += f"Doc {doc_idx+1}: {doc}\n\n"
- code_str = ''
- for code_idx, code_piece in enumerate(code_list):
- code_str += f"```python\n{code_piece['code']}\n```\n\n```output\n{code_piece['output']}\n```\n\n"
- str_cut = cut_seq(seq=code_str,l=max_code_length)
- code_str = str_cut['string_after_cut']
- code_str_len = str_cut['effective_length']
- if not code_str.startswith('```') and len(code_str)>0:
- code_str = '```\n'+code_str
- problem_len = len(tokenizer(user_problem)['input_ids'])
- context_str = cut_seq(seq=doc_str+code_str,l=max_context_length-problem_len)
- context_str = context_str['string_after_cut']
- if len(doc_str)>0:
- context_str = 'Documents:\n'+context_str
- call_tool_argument = {
- 'tool': tool_name,
- 'model': expert_model_to_call,
- 'context_str': context_str,
- 'vllm_model_configs': vllm_model_configs,
- 'cur_output_dir': cur_output_dir,
- 'problem': user_problem,
- 'id': e['id'],
- 'eid': e['eid']
- }
- elif tool_call['name']=='answer':
- if 'qwen2.5-math' in expert_model_to_call.lower():
- max_code_length = 1000
- max_context_length = 2000
- elif 'llama-3.3' in expert_model_to_call.lower():
- max_code_length = 10000
- max_context_length = 80000
- elif 'qwen3' in expert_model_to_call.lower():
- max_code_length = 12000
- max_context_length = 24000
- elif 'gpt-5' in expert_model_to_call.lower():
- max_code_length = 40000
- max_context_length = 120000
- doc_str = ''
- for doc_idx, doc in enumerate(doc_list):
- if 'gpt-5' in expert_model_to_call.lower() or 'llama' in expert_model_to_call.lower():
- doc_str += f"Doc {doc_idx+1}: {doc}\n\n"
- else:
- doc_str += f"Doc {doc_idx+1}: {doc[:1000]}\n\n"
- code_str = ''
- for code_idx, code_piece in enumerate(code_list):
- code_str += f"```python\n{code_piece['code']}\n```\n\n```output\n{code_piece['output']}\n```\n\n"
- str_cut = cut_seq(seq=code_str,l=max_code_length)
- code_str = str_cut['string_after_cut']
- code_str_len = str_cut['effective_length']
- if not code_str.startswith('```') and len(code_str)>0:
- code_str = '```\n'+code_str
- problem_len = len(tokenizer(user_problem)['input_ids'])
- context_str = cut_seq(seq=doc_str+code_str,l=max_context_length-problem_len)
- context_str = context_str['string_after_cut']
- if len(doc_str)>0:
- context_str = 'Documents:\n'+context_str
- call_tool_argument = {
- 'tool': tool_name,
- 'model': expert_model_to_call,
- 'context_str': context_str,
- 'vllm_model_configs': vllm_model_configs,
- 'cur_output_dir': cur_output_dir,
- 'problem': user_problem,
- 'answer': answer,
- 'id': e['id'],
- 'eid': e['eid']
- }
- elif tool_call['name'] in ['search']:
- if 'qwen3' in expert_model_to_call.lower():
- max_code_length = 12000
- max_context_length = 24000
- elif 'gpt-5' in expert_model_to_call.lower():
- max_code_length = 40000
- max_context_length = 120000
- doc_str = ''
- for doc_idx, doc in enumerate(doc_list):
- if 'gpt-5' in expert_model_to_call.lower():
- doc_str += f"Doc {doc_idx+1}: {doc}\n\n"
- else:
- doc_str += f"Doc {doc_idx+1}: {doc[:1000]}\n\n"
- code_str = ''
- for code_idx, code_piece in enumerate(code_list):
- code_str += f"```python\n{code_piece['code']}\n```\n\n```output\n{code_piece['output']}\n```\n\n"
- str_cut = cut_seq(seq=code_str,l=max_code_length)
- code_str = str_cut['string_after_cut']
- code_str_len = str_cut['effective_length']
- if not code_str.startswith('```') and len(code_str)>0:
- code_str = '```\n'+code_str
- problem_len = len(tokenizer(user_problem)['input_ids'])
- context_str = cut_seq(seq=doc_str+code_str,l=max_context_length-problem_len)
- context_str = context_str['string_after_cut']
- if len(doc_str)>0:
- context_str = 'Documents:\n'+context_str
- call_tool_argument = {
- 'tool': tool_name,
- 'model': expert_model_to_call,
- 'context_str': context_str,
- 'vllm_model_configs': vllm_model_configs,
- 'cur_output_dir': cur_output_dir,
- 'problem': user_problem,
- 'answer': answer,
- 'id': e['id'],
- 'eid': e['eid']
- }
- tool_call_list.append([call_tool,call_tool_argument])
- break
- all_tool_calls.append(cur_tool_calls)
-
- cache_argument = []
- for t in tool_call_list:
- cache_argument.append(t[1])
- if len(tool_call_list)==0:
- continue
- cur_responses = asyncio.run(run_all(tool_call_list))
- all_tool_responses[f"turn_{step}_response"] = cur_responses
- all_message_responses[f"turn_{step}_message"] = message_dict
- finish_flag = False
- for cur_response in cur_responses:
- if cur_response['tool']=='enhance_reasoning':
- if len(cur_response['exec_result'].strip())>0:
- code_list.append({'code': cur_response['generated_code'], 'output': cur_response['exec_result']})
- elif cur_response['tool']=='answer':
- final_correct = cur_response['correctness']
- final_answer_model = cur_response['model']
- final_pred = cur_response['pred'].strip()
- finish_flag = True
- break
- elif cur_response['tool']=='search':
- for one_doc in cur_response['search_results_data'][::-1]:
- if not one_doc in doc_list:
- doc_list.append(one_doc)
- if finish_flag:
- break
-
- return_dict = {
- 'id': e['id'],
- 'problem': problem,
- 'all_tool_calls': all_tool_calls,
- 'all_tool_responses': all_tool_responses,
- 'answer': answer,
- 'all_message_responses': all_message_responses,
- 'correct': final_correct
- }
- with open(os.path.join(my_output_dir,f"{e['id']}.json"),'w') as f:
- json.dump(return_dict,f,indent=2)
- return return_dict
-
-if __name__=='__main__':
-
- parser = argparse.ArgumentParser()
- parser.add_argument('--model_name', type=str)
- parser.add_argument('--output_dir', type=str)
- parser.add_argument('--model_config', type=str)
- parser.add_argument('--max_rounds', type=int, default=50)
- parser.add_argument('--model_type', type=str, default='Qwen/Qwen3-8B')
- parser.add_argument('--example_path', type=str)
- args = parser.parse_args()
-
- # global MODEL_NAME
- MODEL_NAME = args.model_name
- # global MODEL_TYPE
- MODEL_TYPE = args.model_type
- # global my_output_dir
- my_output_dir = args.output_dir
- # global MAX_ROUNDS
- MAX_ROUNDS = args.max_rounds
- if not os.path.isdir(os.path.join(my_output_dir,'answer_cache')):
- os.makedirs(os.path.join(my_output_dir,'answer_cache'))
- # global vllm_model_configs
- with open(args.model_config) as f:
- vllm_model_configs = json.load(f)
-
- with open(args.example_path) as f:
- lines = f.readlines()
- examples = []
- for eid,l in enumerate(lines):
- raw_example = json.loads(l)
- raw_example['eid'] = eid
- examples.append([run_single,raw_example])
-
- tool_call_results = asyncio.run(run_all(examples))
\ No newline at end of file