ADD file via upload

庄鑫赟
p5lu8poqt 2 weeks ago
parent e8e8301b16
commit 809cee180f

@ -0,0 +1,713 @@
import os
import random
import time
import json
import requests
import asyncio
import subprocess
from tqdm import tqdm
from transformers import AutoTokenizer
import sys
REPO_PATH = os.getenv("REPO_PATH")
sys.path.append(REPO_PATH)
from LLM_CALL import get_llm_response
import multiprocessing as mp
import argparse
import logging
from openai import OpenAI
logging.disable(logging.CRITICAL)
MODEL_NAME = None
my_output_dir = None
MAX_ROUNDS = None
MODEL_TYPE = None
MODEL_MAPPING = None
TOOL_PRICING = None
vllm_model_configs = None
with open('tools.json') as f:
raw_tools = json.load(f)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
# Provide your api key
oss_client = OpenAI(
base_url = "https://integrate.api.nvidia.com/v1",
api_key = os.getenv("OSS_KEY")
)
MODEL_MAPPING = {
"search-1": "gpt-5",
"search-2": "gpt-5-mini",
"search-3": "Qwen/Qwen3-32B",
"reasoner-1": "gpt-5",
"reasoner-2": "gpt-5-mini",
"reasoner-3": "Qwen/Qwen2.5-Coder-32B-Instruct",
"answer-math-1": "Qwen/Qwen2.5-Math-72B-Instruct",
"answer-math-2": "Qwen/Qwen2.5-Math-7B-Instruct",
"answer-1": "gpt-5",
"answer-2": "gpt-5-mini",
"answer-3": "meta-llama/Llama-3.3-70B-Instruct",
"answer-4": "Qwen/Qwen3-32B"
}
TOOL_PRICING = {
"gpt-5": {
"input_tokens_per_million": 1.25/10000000,
"output_tokens_per_million": 10/1000000
},
"gpt-5-mini": {
"input_tokens_per_million": 0.25/10000000,
"output_tokens_per_million": 2/1000000
},
"Qwen/Qwen3-32B": {
"input_tokens_per_million": 0.8/1000000,
"output_tokens_per_million": 0.8/1000000
},
"Qwen/Qwen2.5-Coder-32B-Instruct": {
"input_tokens_per_million": 0.8/1000000,
"output_tokens_per_million": 0.8/1000000
},
"Qwen/Qwen2.5-Math-72B-Instruct": {
"input_tokens_per_million": 0.9/1000000,
"output_tokens_per_million": 0.9/1000000
},
"Qwen/Qwen2.5-Math-7B-Instruct": {
"input_tokens_per_million": 0.2/1000000,
"output_tokens_per_million": 0.2/1000000
},
"meta-llama/Llama-3.3-70B-Instruct": {
"input_tokens_per_million": 0.9/1000000,
"output_tokens_per_million": 0.9/1000000
},
"Qwen/Qwen3-8B": {
"input_tokens_per_million": 0.2/1000000,
"output_tokens_per_million": 0.2/1000000
},
"code_interpreter_per_second": 0.0000083,
"tavily": {
"search": 0.01,
"extract": 0.002
},
}
ALL_TOOLS = {
"enhance_reasoning": {
'model': ["reasoner-1", "reasoner-2", "reasoner-3"]
},
"answer": {
'model': ["answer-math-1", "answer-math-2", "answer-1", "answer-2", "answer-3", "answer-4"]
},
"search": {
"model": ["search-1", "search-2", "search-3"]
},
}
def cut_seq(seq,l):
if len(seq)==0:
return {
'effective_length': 0,
'string_after_cut': ''
}
token_ids = tokenizer(seq)['input_ids']
rs = tokenizer.batch_decode(token_ids[-l:], skip_special_tokens=True)
return {
'effective_length': len(token_ids),
'string_after_cut': ''.join(rs)
}
def call_tool(arguments):
start_time = time.time()
if arguments['tool']=='enhance_reasoning':
supported_models = [MODEL_MAPPING[m] for m in ALL_TOOLS['enhance_reasoning']['model']]
assert arguments['model'] in supported_models,f"Model {arguments['model']} is not supported in enhance_reasoning. Support models: {supported_models}"
prompt = arguments['context_str'].strip()+'\n\n'
prompt += f"Question: {arguments['problem']}\nInstead of directly answering the question, please write additional python code that will give intermidiate results after execution. Wrap the code within ```python and ```. The code should be self-contained with all the import and initialization."
model_name = arguments['model']
response = ''
if 'gpt-5' in model_name.lower():
response = get_llm_response(model=model_name,messages=prompt,return_raw_response=True,temperature=1,max_length=40000)
elif 'qwen2.5-coder' in model_name.lower():
response = get_llm_response(model=model_name,messages=prompt,return_raw_response=True,model_type='vllm',max_length=8000,temperature=0.2,model_config=arguments['vllm_model_configs'][model_name],model_config_path=arguments['vllm_model_configs']['vllm_model_config_path'],model_config_idx=arguments['eid'])
if isinstance(response,str):
response = ''
while not response:
try:
response = oss_client.chat.completions.create(
model="nvdev/qwen/qwen2.5-coder-32b-instruct",
messages=[{"role":"user","content":prompt}],temperature=0.2,
top_p=0.7,
max_tokens=8000,
)
except Exception as qwen_error:
time.sleep(3)
if isinstance(response,str):
arguments['generated_code'] = ''
arguments['exec_result'] = ''
return arguments
try:
generated_code = response.choices[0].message.content.split('```python')[-1].split('```')[0]
except:
generated_code = ''
if generated_code=='':
arguments['generated_code'] = ''
arguments['exec_result'] = ''
return arguments
code_path = str(os.path.join(arguments['cur_output_dir'],f'exec_code_{arguments["id"]}.py'))
with open(code_path,'w') as f:
f.write(generated_code)
exec_result = ''
exec_start = time.time()
try:
exec_result = subprocess.run(['python', code_path], timeout=60, capture_output=True, text=True)
exec_time = time.time()-exec_start
exec_result = exec_result.stdout
with open(os.path.join(arguments['cur_output_dir'],f'exec_out_{arguments["id"]}.txt'),'w') as f:
f.write(exec_result)
except Exception as e:
pass
exec_time = time.time() - exec_start
arguments['generated_code'] = generated_code
arguments['exec_result'] = exec_result
return arguments
elif arguments['tool']=='answer':
prompt = arguments['context_str'].strip()+'\n\nProblem:\n'+arguments['problem']
response_str = ''
pred = ''
if 'qwen3' in arguments['model'].lower():
model_name = arguments['model']
messages = [
{"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{}."},
{"role": "user", "content": prompt}
]
arguments['messages'] = messages
response = get_llm_response(model=model_name,messages=messages,return_raw_response=True,model_type='vllm',max_length=8000,temperature=0.2,model_config=arguments['vllm_model_configs'][model_name],model_config_path=arguments['vllm_model_configs']['vllm_model_config_path'],model_config_idx=arguments['eid'])
if isinstance(response,str):
arguments['response'] = ''
arguments['pred'] = ''
arguments['correctness'] = False
return arguments
response_str = response.choices[0].message.content
if not isinstance(response_str,str) or not '\\boxed{' in response_str:
pred = ''
else:
pred_components = response.choices[0].message.content.split('\\boxed{')[-1].split('}')[:-1]
pred = '}'.join(pred_components).strip()
elif 'qwen2.5-math' in arguments['model'].lower():
model_name = arguments['model']
messages = [
{"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{}."},
{"role": "user", "content": prompt}
]
arguments['messages'] = messages
response = get_llm_response(model=model_name,messages=messages,return_raw_response=True,model_type='vllm',max_length=2000,temperature=0.2,model_config=arguments['vllm_model_configs'][model_name],model_config_path=arguments['vllm_model_configs']['vllm_model_config_path'],model_config_idx=arguments['eid'])
if isinstance(response,str):
arguments['response'] = ''
arguments['pred'] = ''
arguments['correctness'] = False
return arguments
response_str = response.choices[0].message.content
if not isinstance(response_str,str) or not '\\boxed{' in response_str:
pred = ''
else:
pred_components = response.choices[0].message.content.split('\\boxed{')[-1].split('}')[:-1]
pred = '}'.join(pred_components).strip()
elif 'gpt-5' in arguments['model'].lower():
model_name = arguments['model']
prompt += ("\n\nTake a deep breath and think hard with high reasoning, wrap the thoughts within <think> and </think>, and wrap only the exact answer without any explanation within <answer> and </answer>."
"Output using the following format:\n<think>\n...\n</think>\n<answer>\n...\n</answer>")
arguments['messages'] = prompt
response = get_llm_response(model=model_name,messages=prompt,return_raw_response=True,max_length=40000)
if isinstance(response,str):
arguments['response'] = ''
arguments['pred'] = ''
arguments['correctness'] = False
return arguments
response_str = response.choices[0].message.content
if isinstance(response_str,str):
pred = response.choices[0].message.content.split('<answer>')[-1].split('</answer>')[0].strip()
else:
pred = ''
elif 'llama-3.3' in arguments['model'].lower():
model_name = arguments['model']
prompt += "\nWrap the thinking process and explanation between <think> and </think> and wrap only the exact answer without any explanation within <answer> and </answer>."
arguments['messages'] = prompt
response = get_llm_response(model=model_name,messages=prompt,return_raw_response=True,model_type='vllm',max_length=40000,temperature=0.2,model_config=arguments['vllm_model_configs'][model_name],model_config_path=arguments['vllm_model_configs']['vllm_model_config_path'],model_config_idx=arguments['eid'])
if isinstance(response,str):
response = ''
while not response:
try:
response = client.chat.completions.create(
model="nvdev/meta/llama-3.3-70b-instruct",
messages=[{"role":"user","content":prompt}],temperature=0.2,
top_p=0.7,
max_tokens=40000,
)
except Exception as llama_error:
time.sleep(3)
if isinstance(response,str):
arguments['response'] = ''
arguments['pred'] = ''
arguments['correctness'] = False
return arguments
response_str = response.choices[0].message.content
if isinstance(response_str,str):
pred = response.choices[0].message.content.split('<answer>')[-1].split('</answer>')[0].strip()
else:
pred = ''
if pred.strip()=='' or len(pred.split(' '))>500:
correctness = False
elif pred.strip().lower()==arguments['answer'].strip().lower():
correctness = True
else:
eval_prompt = (f"Question: {arguments['problem']}\n\n"
f"Student answer: {pred}\n\n"
f"Reference answer: {arguments['answer']}\n\n"
"Assume that the reference answer is correct. Output <correct>True</correct> if the student answer matches the reference answer. Output <correct>False</correct> if the student answer does not match the reference answer.")
eval_response = get_llm_response(model='gpt-5',messages=eval_prompt,temperature=1)
eval_result = eval_response.split('<correct>')[-1].split('</correct>')[0]
if eval_result.lower()=='true':
correctness = True
else:
correctness = False
arguments['response'] = response_str
arguments['pred'] = pred
arguments['correctness'] = correctness
return arguments
elif arguments['tool']=='search':
contents = []
prompt = arguments['context_str'].strip()+'\n\n'
prompt += f"Question: {arguments['problem']}\nInstead of directly answering the question, please write a query to search for a piece of relevant and missing information. The query should be a few key words about the information to search or a short sentence. Wrap the query within <query> and </query>."
cur_query_writer = arguments['model']
query_to_call = None
if 'gpt-5' in cur_query_writer.lower():
response = get_llm_response(model=cur_query_writer,messages=prompt,return_raw_response=True,temperature=1,max_length=40000)
if isinstance(response,str) or not response:
query_to_call = arguments['problem']
else:
query_to_call = response.choices[0].message.content.split('<query>')[-1].split('</query>')[0]
elif 'qwen3' in cur_query_writer.lower():
response = get_llm_response(model=cur_query_writer,messages=prompt,return_raw_response=True,model_type='vllm',max_length=8000,temperature=0.2,model_config=arguments['vllm_model_configs'][cur_query_writer],model_config_path=arguments['vllm_model_configs']['vllm_model_config_path'],model_config_idx=arguments['eid'])
if isinstance(response,str):
query_to_call = arguments['problem']
else:
query_to_call = response.choices[0].message.content.split('<query>')[-1].split('</query>')[0]
if query_to_call is None or len(query_to_call)<5:
pass
else:
assert len(query_to_call)>5,f"{query_to_call}"
payload = {
"queries": [query_to_call[:390]],
"topk": 50,
"return_scores": True,
"eid": arguments['id']
}
results = None
all_vllm_model_configs = arguments['vllm_model_configs']
search_try_count = 0
while not results:
search_try_count += 1
try:
cur_model_config = random.choice(all_vllm_model_configs['retrieval'])
results = requests.post(f'http://{cur_model_config["ip_addr"]}:{cur_model_config["port"]}/retrieve', json=payload).json()
except Exception as search_error:
time.sleep(3)
if results:
for r in results[0]:
if 'content' in r['document']:
contents.append(r['document']['content'])
elif 'contents' in r['document']:
contents.append(r['document']['contents'])
arguments['query'] = query_to_call
arguments['search_results_data'] = contents
if 'tokenizer' in arguments:
arguments.pop('tokenizer')
return arguments
import asyncio
import contextlib
from concurrent.futures import ThreadPoolExecutor
from typing import Iterable, Tuple, Any, Callable
# task_list is an iterable of (func, arg) pairs
async def run_all(
task_list: Iterable[Tuple[Callable[[Any], Any], Any]],
concurrency: int = 2,
progress: bool = False,
return_exceptions: bool = False,
):
loop = asyncio.get_running_loop()
sem = asyncio.Semaphore(concurrency)
# create the executor sized to your concurrency gate
with ThreadPoolExecutor(max_workers=concurrency) as executor:
# wrap each task so it obeys the semaphore
async def run_one(idx: int, func: Callable, arg: Any):
async with sem:
if asyncio.iscoroutinefunction(func):
res = await func(arg)
else:
res = await loop.run_in_executor(executor, func, arg)
return idx, res, None
task_list = list(task_list)
tasks = [asyncio.create_task(run_one(i, f, a))
for i, (f, a) in enumerate(task_list)]
results = [None] * len(tasks)
if progress:
from tqdm import tqdm
pbar = tqdm(total=len(tasks))
else:
pbar = None
try:
# update progress as tasks complete
for fut in asyncio.as_completed(tasks):
idx, res, err = await fut
if err is None:
results[idx] = res
else:
if return_exceptions:
results[idx] = err
else:
# cancel remaining, then re-raise the first error
for t in tasks:
t.cancel()
with contextlib.suppress(Exception):
await asyncio.gather(*tasks, return_exceptions=True)
raise err
if pbar:
pbar.update(1)
finally:
if pbar:
pbar.close()
return results
def run_single(e):
if os.path.isfile(os.path.join(my_output_dir,f"{e['id']}.json")):
return
doc_list = []
code_list = []
attempt_list = []
exp_start_time = time.time()
problem = e['question']
user_problem = problem
answer = e['answer']
all_tool_calls = []
final_correct = False
final_answer_model = None
final_pred = ''
all_tool_responses = {}
all_message_responses = {}
used_tools = []
for step in range(MAX_ROUNDS):
cur_output_dir = os.path.join(my_output_dir,f"step_{step}")
if not os.path.isdir(os.path.join(cur_output_dir,'tool_return')):
try:
os.makedirs(os.path.join(cur_output_dir,'tool_return'))
except:
pass
tools = []
for t in raw_tools:
tools.append(t)
doc_str = ''
for doc_idx, doc in enumerate(doc_list):
doc_str += f"Doc {doc_idx+1}: {doc[:1200]} ...\n\n"
code_str = ''
for code_idx, code_piece in enumerate(code_list):
code_str += f"```python\n{code_piece['code']}\n```\n\n```output\n{code_piece['output']}\n```\n\n"
attempt_str = ''
for attempt_idx, attempt in enumerate(attempt_list):
attempt_str += f"Attempt{attempt_idx+1} answer by {attempt['model']}: {attempt['answer']}\n"
str_cut = cut_seq(seq=attempt_str,l=8000)
attempt_str = str_cut['string_after_cut']
if not attempt_str.startswith('Attempt') and len(attempt_str)>0:
attempt_str = 'Attempt answer: '+attempt_str
str_cut = cut_seq(seq=code_str+attempt_str,l=12000)
code_attempt_str = str_cut['string_after_cut']
code_attempt_str_len = str_cut['effective_length']
if not code_attempt_str.startswith('```') and len(code_attempt_str)>0:
code_attempt_str = '```\n'+code_attempt_str
doc_flag = False
problem_length = len(tokenizer(problem)['input_ids'])
if code_attempt_str_len<27000-problem_length:
if code_attempt_str:
context_str = cut_seq(seq=doc_str+"\npython code and execution outputs:\n"+code_attempt_str,l=27000-problem_length)
else:
context_str = cut_seq(seq=doc_str,l=27000-problem_length)
context_str = context_str['string_after_cut']
if len(doc_str)>0:
doc_flag = True
context_str = 'Documents:\n'+context_str
else:
context_str = code_attempt_str
removed_tool = None
if len(used_tools)>1 and used_tools[-1]==used_tools[-2]:
updated_tools = []
removed_tool = used_tools[-1]
for t in tools:
if t['function']['name']!=used_tools[-1]:
updated_tools.append(t)
else:
updated_tools = tools
cur_tool_set = [t['function']['name'] for t in updated_tools]
chat = [
{"role": "system", "content": "You are good at using tools."},
{"role": "user", "content": f"Problem: {problem}\n\n{context_str}\n\nChoose an appropriate tool.'"}
]
response = get_llm_response(model=MODEL_NAME,messages=chat,return_raw_response=True,model_type='vllm',model_config=vllm_model_configs[MODEL_NAME],temperature=1,max_length=12000,tools=tools,model_config_path=vllm_model_configs['vllm_model_config_path'],model_config_idx=e['eid'])
cache_idx = 0
while os.path.isfile(f"input_output/{cache_idx}.json"):
cache_idx += 1
if isinstance(response,str):
continue
tool_calls = response.choices[0].message.tool_calls
cache_tool_calls = []
for one_tool_call in tool_calls:
tool_name = one_tool_call.function.name
try:
tool_arguments = json.loads(one_tool_call.function.arguments)
except:
pass
cache_tool_calls.append({
'tool_name': tool_name,
'tool_arguments': tool_arguments
})
message_dict = {
'content': response.choices[0].message.content,
'tool_calls': cache_tool_calls
}
if len(tool_calls)==0:
all_tool_calls.append(f'342 invalid tool calls {tool_calls}')
continue
tool_call_list = []
cur_tool_calls = []
processed_tools = set()
for one_tool_call in tool_calls:
tool_name = one_tool_call.function.name
try:
tool_arguments = json.loads(one_tool_call.function.arguments)
except:
pass
if not tool_name in ALL_TOOLS:
cur_tool_calls.append(f'350 invalid tool calls {tool_calls}')
continue
func_signature = ALL_TOOLS[tool_name]
valid_tool_call = True
for parameter_name,parameter_values in func_signature.items():
if (not parameter_name in tool_arguments):
valid_tool_call = False
if (not tool_arguments[parameter_name] in parameter_values) and parameter_values!='any':
valid_tool_call = False
if not valid_tool_call:
cur_tool_calls.append(f'360 invalid tool calls {tool_calls}')
continue
if tool_name in processed_tools:
continue
processed_tools.add(tool_name)
tool_call = {
'name': tool_name,
'arguments': tool_arguments
}
cur_tool_calls.append([tool_call])
expert_model_to_call = MODEL_MAPPING[tool_arguments['model']]
call_tool_argument = None
used_tools.append(tool_name)
if tool_name=='enhance_reasoning':
if 'qwen2.5-coder' in expert_model_to_call.lower():
max_code_length = 16000
max_context_length = 24000
elif 'gpt-5' in expert_model_to_call.lower():
max_code_length = 40000
max_context_length = 120000
doc_str = ''
for doc_idx, doc in enumerate(doc_list):
if 'qwen2.5-coder' in expert_model_to_call.lower():
doc_str += f"Doc {doc_idx+1}: {doc[:1000]}\n\n"
else:
doc_str += f"Doc {doc_idx+1}: {doc}\n\n"
code_str = ''
for code_idx, code_piece in enumerate(code_list):
code_str += f"```python\n{code_piece['code']}\n```\n\n```output\n{code_piece['output']}\n```\n\n"
str_cut = cut_seq(seq=code_str,l=max_code_length)
code_str = str_cut['string_after_cut']
code_str_len = str_cut['effective_length']
if not code_str.startswith('```') and len(code_str)>0:
code_str = '```\n'+code_str
problem_len = len(tokenizer(user_problem)['input_ids'])
context_str = cut_seq(seq=doc_str+code_str,l=max_context_length-problem_len)
context_str = context_str['string_after_cut']
if len(doc_str)>0:
context_str = 'Documents:\n'+context_str
call_tool_argument = {
'tool': tool_name,
'model': expert_model_to_call,
'context_str': context_str,
'vllm_model_configs': vllm_model_configs,
'cur_output_dir': cur_output_dir,
'problem': user_problem,
'id': e['id'],
'eid': e['eid']
}
elif tool_call['name']=='answer':
if 'qwen2.5-math' in expert_model_to_call.lower():
max_code_length = 1000
max_context_length = 2000
elif 'llama-3.3' in expert_model_to_call.lower():
max_code_length = 10000
max_context_length = 80000
elif 'qwen3' in expert_model_to_call.lower():
max_code_length = 12000
max_context_length = 24000
elif 'gpt-5' in expert_model_to_call.lower():
max_code_length = 40000
max_context_length = 120000
doc_str = ''
for doc_idx, doc in enumerate(doc_list):
if 'gpt-5' in expert_model_to_call.lower() or 'llama' in expert_model_to_call.lower():
doc_str += f"Doc {doc_idx+1}: {doc}\n\n"
else:
doc_str += f"Doc {doc_idx+1}: {doc[:1000]}\n\n"
code_str = ''
for code_idx, code_piece in enumerate(code_list):
code_str += f"```python\n{code_piece['code']}\n```\n\n```output\n{code_piece['output']}\n```\n\n"
str_cut = cut_seq(seq=code_str,l=max_code_length)
code_str = str_cut['string_after_cut']
code_str_len = str_cut['effective_length']
if not code_str.startswith('```') and len(code_str)>0:
code_str = '```\n'+code_str
problem_len = len(tokenizer(user_problem)['input_ids'])
context_str = cut_seq(seq=doc_str+code_str,l=max_context_length-problem_len)
context_str = context_str['string_after_cut']
if len(doc_str)>0:
context_str = 'Documents:\n'+context_str
call_tool_argument = {
'tool': tool_name,
'model': expert_model_to_call,
'context_str': context_str,
'vllm_model_configs': vllm_model_configs,
'cur_output_dir': cur_output_dir,
'problem': user_problem,
'answer': answer,
'id': e['id'],
'eid': e['eid']
}
elif tool_call['name'] in ['search']:
if 'qwen3' in expert_model_to_call.lower():
max_code_length = 12000
max_context_length = 24000
elif 'gpt-5' in expert_model_to_call.lower():
max_code_length = 40000
max_context_length = 120000
doc_str = ''
for doc_idx, doc in enumerate(doc_list):
if 'gpt-5' in expert_model_to_call.lower():
doc_str += f"Doc {doc_idx+1}: {doc}\n\n"
else:
doc_str += f"Doc {doc_idx+1}: {doc[:1000]}\n\n"
code_str = ''
for code_idx, code_piece in enumerate(code_list):
code_str += f"```python\n{code_piece['code']}\n```\n\n```output\n{code_piece['output']}\n```\n\n"
str_cut = cut_seq(seq=code_str,l=max_code_length)
code_str = str_cut['string_after_cut']
code_str_len = str_cut['effective_length']
if not code_str.startswith('```') and len(code_str)>0:
code_str = '```\n'+code_str
problem_len = len(tokenizer(user_problem)['input_ids'])
context_str = cut_seq(seq=doc_str+code_str,l=max_context_length-problem_len)
context_str = context_str['string_after_cut']
if len(doc_str)>0:
context_str = 'Documents:\n'+context_str
call_tool_argument = {
'tool': tool_name,
'model': expert_model_to_call,
'context_str': context_str,
'vllm_model_configs': vllm_model_configs,
'cur_output_dir': cur_output_dir,
'problem': user_problem,
'answer': answer,
'id': e['id'],
'eid': e['eid']
}
tool_call_list.append([call_tool,call_tool_argument])
break
all_tool_calls.append(cur_tool_calls)
cache_argument = []
for t in tool_call_list:
cache_argument.append(t[1])
if len(tool_call_list)==0:
continue
cur_responses = asyncio.run(run_all(tool_call_list))
all_tool_responses[f"turn_{step}_response"] = cur_responses
all_message_responses[f"turn_{step}_message"] = message_dict
finish_flag = False
for cur_response in cur_responses:
if cur_response['tool']=='enhance_reasoning':
if len(cur_response['exec_result'].strip())>0:
code_list.append({'code': cur_response['generated_code'], 'output': cur_response['exec_result']})
elif cur_response['tool']=='answer':
final_correct = cur_response['correctness']
final_answer_model = cur_response['model']
final_pred = cur_response['pred'].strip()
finish_flag = True
break
elif cur_response['tool']=='search':
for one_doc in cur_response['search_results_data'][::-1]:
if not one_doc in doc_list:
doc_list.append(one_doc)
if finish_flag:
break
return_dict = {
'id': e['id'],
'problem': problem,
'all_tool_calls': all_tool_calls,
'all_tool_responses': all_tool_responses,
'answer': answer,
'all_message_responses': all_message_responses,
'correct': final_correct
}
with open(os.path.join(my_output_dir,f"{e['id']}.json"),'w') as f:
json.dump(return_dict,f,indent=2)
return return_dict
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str)
parser.add_argument('--output_dir', type=str)
parser.add_argument('--model_config', type=str)
parser.add_argument('--max_rounds', type=int, default=50)
parser.add_argument('--model_type', type=str, default='Qwen/Qwen3-8B')
parser.add_argument('--example_path', type=str)
args = parser.parse_args()
# global MODEL_NAME
MODEL_NAME = args.model_name
# global MODEL_TYPE
MODEL_TYPE = args.model_type
# global my_output_dir
my_output_dir = args.output_dir
# global MAX_ROUNDS
MAX_ROUNDS = args.max_rounds
if not os.path.isdir(os.path.join(my_output_dir,'answer_cache')):
os.makedirs(os.path.join(my_output_dir,'answer_cache'))
# global vllm_model_configs
with open(args.model_config) as f:
vllm_model_configs = json.load(f)
with open(args.example_path) as f:
lines = f.readlines()
examples = []
for eid,l in enumerate(lines):
raw_example = json.loads(l)
raw_example['eid'] = eid
examples.append([run_single,raw_example])
tool_call_results = asyncio.run(run_all(examples))
Loading…
Cancel
Save