#include "BasicBlock.h" #include "Constant.h" #include "Function.h" #include "IRStmtBuilder.h" #include "Module.h" #include "Type.h" #include #include #ifdef DEBUG // 用于调试信息,大家可以在编译过程中通过" -DDEBUG"来开启这一选项 #define DEBUG_OUTPUT std::cout << __LINE__ << std::endl; // 输出行号的简单示例 #else #define DEBUG_OUTPUT #endif #define CONST_INT(num) \ ConstantInt::create(num, module) #define CONST_FP(num) \ ConstantFloat::create(num, module) // 得到常数值的表示,方便后面多次用到 using namespace SysYF::IR; int main() { auto module = Module::create("SysYF code"); // module name是什么无关紧要 auto builder = IRStmtBuilder::create(nullptr, module); SysYF::Ptr Int32Type = Type::get_int32_type(module); // add函数 // 函数参数类型的vector std::vector> Ints(2, Int32Type); //通过返回值类型与参数类型列表得到函数类型 auto addFunTy = FunctionType::create(Int32Type, Ints); // 由函数类型得到函数 auto addFun = Function::create(addFunTy, "addFun", module); // BB的名字在生成中无所谓,但是可以方便阅读 auto bb = BasicBlock::create(module, "entry", addFun); builder->set_insert_point(bb); // 一个BB的开始,将当前插入指令点的位置设在bb auto retAlloca = builder->create_alloca(Int32Type); // 在内存中分配返回值的位置 auto aAlloca = builder->create_alloca(Int32Type); // 在内存中分配参数a的位置 auto bAlloca = builder->create_alloca(Int32Type); // 在内存中分配参数b的位置 std::vector> args; // 获取climbStairs函数的形参,通过Function中的iterator for (auto arg = addFun->arg_begin(); arg != addFun->arg_end(); arg++) { args.push_back(*arg); // * 号运算符是从迭代器中取出迭代器当前指向的元素 } builder->create_store(args[0], aAlloca); // store参数n builder->create_store(args[1], bAlloca); // store参数n auto aLoad = builder->create_load(aAlloca); auto bLoad = builder->create_load(bAlloca); auto add = builder->create_iadd(aLoad, bLoad); auto sub = builder->create_isub(add, CONST_INT(1)); // ret builder->create_ret(sub); // main函数 auto mainFun = Function::create(FunctionType::create(Int32Type, {}), "main", module); bb = BasicBlock::create(module, "entry", mainFun); // BasicBlock的名字在生成中无所谓,但是可以方便阅读 builder->set_insert_point(bb); retAlloca = builder->create_alloca(Int32Type); auto resAlloca = builder->create_alloca(Int32Type); aAlloca = builder->create_alloca(Int32Type); bAlloca = builder->create_alloca(Int32Type); auto cAlloca = builder->create_alloca(Int32Type); builder->create_store(CONST_INT(3), aAlloca); builder->create_store(CONST_INT(2), bAlloca); builder->create_store(CONST_INT(5), cAlloca); aLoad = builder->create_load(aAlloca); bLoad = builder->create_load(bAlloca); auto cLoad = builder->create_load(cAlloca); auto call = builder->create_call(addFun, {aLoad, bLoad}); // 为什么这里传的是{add}呢? add = builder->create_iadd(cLoad, call); builder->create_ret(add); // auto num0Gep = builder->create_gep(num, {CONST_INT(0), CONST_INT(0)}); // GEP: 这里为什么是{0, 0}呢? (实验报告相关) // auto num0Load = builder->create_load(num0Gep); // builder->create_store(num0Load, n); // auto tmpLoad = builder->create_load(tmp); // auto numGep = builder->create_gep(num, {CONST_INT(0), tmpLoad}); // auto numLoad = builder->create_load(numGep); // auto x0Gep = builder->create_gep(x, {CONST_INT(0), CONST_INT(0)}); // builder->create_store(numLoad, x0Gep); // nLoad = builder->create_load(n); // tmpLoad = builder->create_load(tmp); // add = builder->create_iadd(nLoad, tmpLoad); // auto call = builder->create_call(addFun, {add}); // 为什么这里传的是{add}呢? // builder->create_store(call, resAlloca); // auto resLoad = builder->create_load(resAlloca); // x0Gep = builder->create_gep(x, {CONST_INT(0), CONST_INT(0)}); // auto x0Load = builder->create_load(x0Gep); // sub = builder->create_isub(resLoad, x0Load); // builder->create_store(sub, retAlloca); // retLoad = builder->create_load(retAlloca); // builder->create_ret(retLoad); // 给这么多注释了,但是可能你们还是会弄很多bug // 所以强烈建议配置AutoComplete,效率会大大提高! // 别人配了AutoComplete,只花1小时coding // 你没有配AutoComplete,找method花5小时,debug花5小时,肯定哭唧唧! // 最后,如果猜不到某个IR指令对应的C++的函数,建议把指令翻译成英语然后在method列表中搜索一下 // 最后的最后,这个例子只涉及到了一点基本的指令生成, // 对于额外的指令,包括数组,在之后的实验中可能需要大家好好搜索一下思考一下, // 还有涉及到的C++语法,可以在gitlab上发issue提问或者向大家提供指导 // 对于这个例子里的代码风格/用法,如果有好的建议也欢迎提出! std::cout << module->print(); return 0; }