You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
278 lines
8.9 KiB
278 lines
8.9 KiB
1 year ago
|
#include <numeric>
|
||
|
#include <ctime>
|
||
|
|
||
|
#include "easypr/train/annCh_train.h"
|
||
|
#include "easypr/config.h"
|
||
|
#include "easypr/core/chars_identify.h"
|
||
|
#include "easypr/core/feature.h"
|
||
|
#include "easypr/core/core_func.h"
|
||
|
#include "easypr/util/util.h"
|
||
|
#include "easypr/train/create_data.h"
|
||
|
|
||
|
namespace easypr {
|
||
|
|
||
|
AnnChTrain::AnnChTrain(const char* chars_folder, const char* xml)
|
||
|
: chars_folder_(chars_folder), ann_xml_(xml)
|
||
|
{
|
||
|
ann_ = cv::ml::ANN_MLP::create();
|
||
|
type = 1;
|
||
|
kv_ = std::shared_ptr<Kv>(new Kv);
|
||
|
kv_->load("resources/text/province_mapping");
|
||
|
extractFeature = getGrayPlusProject;
|
||
|
}
|
||
|
|
||
|
void AnnChTrain::train()
|
||
|
{
|
||
|
int classNumber = 0;
|
||
|
int input_number = 0;
|
||
|
int hidden_number = 0;
|
||
|
int output_number = 0;
|
||
|
|
||
|
bool useLBP = false;
|
||
|
if (useLBP)
|
||
|
input_number = kCharLBPPatterns * kCharLBPGridX * kCharLBPGridY;
|
||
|
else
|
||
|
input_number = kGrayCharHeight * kGrayCharWidth;
|
||
|
|
||
|
input_number += 64;
|
||
|
|
||
|
classNumber = kChineseNumber;
|
||
|
hidden_number = kCharHiddenNeurans;
|
||
|
output_number = classNumber;
|
||
|
cv::Mat layers;
|
||
|
|
||
|
int first_hidden_neurons = 48;
|
||
|
int second_hidden_neurons = 32;
|
||
|
|
||
|
int N = input_number;
|
||
|
int m = output_number;
|
||
|
//int first_hidden_neurons = int(std::sqrt((m + 2) * N) + 2 * std::sqrt(N / (m + 2)));
|
||
|
//int second_hidden_neurons = int(m * std::sqrt(N / (m + 2)));
|
||
|
|
||
|
bool useTLFN = false;
|
||
|
if (!useTLFN) {
|
||
|
layers.create(1, 3, CV_32SC1);
|
||
|
layers.at<int>(0) = input_number;
|
||
|
layers.at<int>(1) = hidden_number;
|
||
|
layers.at<int>(2) = output_number;
|
||
|
}
|
||
|
else {
|
||
|
fprintf(stdout, ">> Use two-layers neural networks,\n");
|
||
|
fprintf(stdout, ">> First_hidden_neurons: %d \n", first_hidden_neurons);
|
||
|
fprintf(stdout, ">> Second_hidden_neurons: %d \n", second_hidden_neurons);
|
||
|
|
||
|
layers.create(1, 4, CV_32SC1);
|
||
|
layers.at<int>(0) = input_number;
|
||
|
layers.at<int>(1) = first_hidden_neurons;
|
||
|
layers.at<int>(2) = second_hidden_neurons;
|
||
|
layers.at<int>(3) = output_number;
|
||
|
}
|
||
|
|
||
|
ann_->setLayerSizes(layers);
|
||
|
ann_->setActivationFunction(cv::ml::ANN_MLP::SIGMOID_SYM, 1, 1);
|
||
|
ann_->setTrainMethod(cv::ml::ANN_MLP::TrainingMethods::BACKPROP);
|
||
|
ann_->setTermCriteria(cvTermCriteria(CV_TERMCRIT_ITER, 30000, 0.0001));
|
||
|
ann_->setBackpropWeightScale(0.1);
|
||
|
ann_->setBackpropMomentumScale(0.1);
|
||
|
|
||
|
auto files = Utils::getFiles(chars_folder_);
|
||
|
if (files.size() == 0) {
|
||
|
fprintf(stdout, "No file found in the train folder!\n");
|
||
|
fprintf(stdout, "You should create a folder named \"tmp\" in EasyPR main folder.\n");
|
||
|
fprintf(stdout, "Copy train data folder(like \"annCh\") under \"tmp\". \n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// using raw data or raw + synthic data.
|
||
|
trainVal(m_number_for_count);
|
||
|
}
|
||
|
|
||
|
std::pair<std::string, std::string> AnnChTrain::identifyGrayChinese(cv::Mat input) {
|
||
|
Mat feature;
|
||
|
extractFeature(input, feature);
|
||
|
float maxVal = -2;
|
||
|
int result = 0;
|
||
|
|
||
|
cv::Mat output(1, kChineseNumber, CV_32FC1);
|
||
|
ann_->predict(feature, output);
|
||
|
|
||
|
for (int j = 0; j < kChineseNumber; j++) {
|
||
|
float val = output.at<float>(j);
|
||
|
//std::cout << "j:" << j << "val:" << val << std::endl;
|
||
|
if (val > maxVal) {
|
||
|
maxVal = val;
|
||
|
result = j;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
auto index = result + kCharsTotalNumber - kChineseNumber;
|
||
|
const char* key = kChars[index];
|
||
|
std::string s = key;
|
||
|
std::string province = kv_->get(s);
|
||
|
|
||
|
return std::make_pair(s, province);
|
||
|
}
|
||
|
|
||
|
void AnnChTrain::test() {
|
||
|
//TODO
|
||
|
}
|
||
|
|
||
|
void AnnChTrain::trainVal(size_t number_for_count) {
|
||
|
assert(chars_folder_);
|
||
|
cv::Mat train_samples;
|
||
|
std::vector<cv::Mat> train_images, val_images;
|
||
|
std::vector<int> train_label, val_labels;
|
||
|
float percentage = 0.7f;
|
||
|
int classNumber = kChineseNumber;
|
||
|
|
||
|
for (int i = 0; i < classNumber; ++i) {
|
||
|
auto char_key = kChars[i + kCharsTotalNumber - classNumber];
|
||
|
char sub_folder[512] = { 0 };
|
||
|
sprintf(sub_folder, "%s/%s", chars_folder_, char_key);
|
||
|
std::string test_char(char_key);
|
||
|
// if (test_char != "zh_yun") continue;
|
||
|
|
||
|
fprintf(stdout, ">> Testing characters %s in %s \n", char_key, sub_folder);
|
||
|
auto chars_files = utils::getFiles(sub_folder);
|
||
|
size_t char_size = chars_files.size();
|
||
|
fprintf(stdout, ">> Characters count: %d \n", (int)char_size);
|
||
|
|
||
|
std::vector<cv::Mat> matVec;
|
||
|
matVec.reserve(number_for_count);
|
||
|
for (auto file : chars_files) {
|
||
|
std::cout << file << std::endl;
|
||
|
auto img = cv::imread(file, IMREAD_GRAYSCALE); // a grayscale image
|
||
|
Mat img_resize;
|
||
|
img_resize.create(kGrayCharHeight, kGrayCharWidth, CV_8UC1);
|
||
|
resize(img, img_resize, img_resize.size(), 0, 0, INTER_LINEAR);
|
||
|
matVec.push_back(img_resize);
|
||
|
}
|
||
|
// genrate the synthetic images
|
||
|
for (int t = 0; t < (int)number_for_count - (int)char_size; t++) {
|
||
|
int rand_range = char_size + t;
|
||
|
int ran_num = rand() % rand_range;
|
||
|
auto img = matVec.at(ran_num);
|
||
|
SHOW_IMAGE(img, 0);
|
||
|
auto simg = generateSyntheticImage(img);
|
||
|
SHOW_IMAGE(simg, 0);
|
||
|
matVec.push_back(simg);
|
||
|
}
|
||
|
fprintf(stdout, ">> Characters count: %d \n", (int)matVec.size());
|
||
|
|
||
|
// random sort the mat;
|
||
|
srand(unsigned(time(NULL)));
|
||
|
random_shuffle(matVec.begin(), matVec.end());
|
||
|
|
||
|
int mat_size = (int)matVec.size();
|
||
|
int split_index = int((float)mat_size * percentage);
|
||
|
for (int j = mat_size - 1; j >= 0; j--) {
|
||
|
Mat img = matVec.at(j);
|
||
|
if (1) {
|
||
|
Mat feature;
|
||
|
extractFeature(img, feature);
|
||
|
if (j <= split_index) {
|
||
|
train_samples.push_back(feature);
|
||
|
train_images.push_back(img);
|
||
|
train_label.push_back(i);
|
||
|
}
|
||
|
else {
|
||
|
val_images.push_back(img);
|
||
|
val_labels.push_back(i);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// generate train data
|
||
|
train_samples.convertTo(train_samples, CV_32F);
|
||
|
cv::Mat train_classes = cv::Mat::zeros((int)train_label.size(), classNumber, CV_32F);
|
||
|
for (int i = 0; i < train_classes.rows; ++i)
|
||
|
train_classes.at<float>(i, train_label[i]) = 1.f;
|
||
|
auto train_data = cv::ml::TrainData::create(train_samples, cv::ml::SampleTypes::ROW_SAMPLE, train_classes);
|
||
|
|
||
|
// train the data, calculate the cost time
|
||
|
std::cout << "Training ANN chinese model, please wait..." << std::endl;
|
||
|
long start = utils::getTimestamp();
|
||
|
ann_->train(train_data);
|
||
|
long end = utils::getTimestamp();
|
||
|
ann_->save(ann_xml_);
|
||
|
std::cout << "Your ANN Model was saved to " << ann_xml_ << std::endl;
|
||
|
std::cout << "Training done. Time elapse: " << (end - start) / (1000 * 60) << "minute" << std::endl;
|
||
|
|
||
|
// test the accuracy_rate in train
|
||
|
if (1) {
|
||
|
int corrects_all = 0, sum_all = train_images.size();
|
||
|
std::cout << "train_images size: " << sum_all << std::endl;
|
||
|
for (size_t i = 0; i < train_images.size(); ++i) {
|
||
|
cv::Mat img = train_images.at(i);
|
||
|
int label = train_label.at(i);
|
||
|
auto char_key = kChars[label + kCharsTotalNumber - classNumber];
|
||
|
std::pair<std::string, std::string> ch = identifyGrayChinese(img);
|
||
|
if (ch.first == char_key)
|
||
|
corrects_all++;
|
||
|
}
|
||
|
float accuracy_rate = (float)corrects_all / (float)sum_all;
|
||
|
std::cout << "Train error_rate: " << (1.f - accuracy_rate) * 100.f << "% "<< std::endl;
|
||
|
}
|
||
|
|
||
|
// test the accuracy_rate in val
|
||
|
if (1) {
|
||
|
int corrects_all = 0, sum_all = val_images.size();
|
||
|
std::cout << "val_images: " << sum_all << std::endl;
|
||
|
for (size_t i = 0; i < val_images.size(); ++i) {
|
||
|
cv::Mat img = val_images.at(i);
|
||
|
int label = val_labels.at(i);
|
||
|
auto char_key = kChars[label + kCharsTotalNumber - classNumber];
|
||
|
std::pair<std::string, std::string> ch = identifyGrayChinese(img);
|
||
|
if (ch.first == char_key)
|
||
|
corrects_all++;
|
||
|
}
|
||
|
float accuracy_rate = (float)corrects_all / (float)sum_all;
|
||
|
std::cout << "Test error_rate: " << (1.f - accuracy_rate) * 100.f << "% "<< std::endl;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
cv::Ptr<cv::ml::TrainData> AnnChTrain::tdata() {
|
||
|
assert(chars_folder_);
|
||
|
|
||
|
cv::Mat samples;
|
||
|
std::vector<int> labels;
|
||
|
|
||
|
std::cout << "Collecting chars in " << chars_folder_ << std::endl;
|
||
|
|
||
|
int classNumber = 0;
|
||
|
if (type == 0) classNumber = kCharsTotalNumber;
|
||
|
if (type == 1) classNumber = kChineseNumber;
|
||
|
|
||
|
for (int i = 0; i < classNumber; ++i) {
|
||
|
auto char_key = kChars[i + kCharsTotalNumber - classNumber];
|
||
|
char sub_folder[512] = {0};
|
||
|
|
||
|
sprintf(sub_folder, "%s/%s", chars_folder_, char_key);
|
||
|
std::cout << " >> Featuring characters " << char_key << " in "
|
||
|
<< sub_folder << std::endl;
|
||
|
|
||
|
auto chars_files = utils::getFiles(sub_folder);
|
||
|
for (auto file : chars_files) {
|
||
|
auto img = cv::imread(file, 0); // a grayscale image
|
||
|
auto fps = charFeatures2(img, kPredictSize);
|
||
|
|
||
|
samples.push_back(fps);
|
||
|
labels.push_back(i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cv::Mat samples_;
|
||
|
samples.convertTo(samples_, CV_32F);
|
||
|
cv::Mat train_classes =
|
||
|
cv::Mat::zeros((int)labels.size(), classNumber, CV_32F);
|
||
|
|
||
|
for (int i = 0; i < train_classes.rows; ++i) {
|
||
|
train_classes.at<float>(i, labels[i]) = 1.f;
|
||
|
}
|
||
|
|
||
|
return cv::ml::TrainData::create(samples_, cv::ml::SampleTypes::ROW_SAMPLE,
|
||
|
train_classes);
|
||
|
}
|
||
|
}
|