训练目录,存放模型训练的代码评注

zhanzhipeng_branch
zzp 1 year ago
parent 737e427c4c
commit 0886cf2a1b

@ -0,0 +1,277 @@
#include <numeric>
#include <ctime>
#include "easypr/train/annCh_train.h"
#include "easypr/config.h"
#include "easypr/core/chars_identify.h"
#include "easypr/core/feature.h"
#include "easypr/core/core_func.h"
#include "easypr/util/util.h"
#include "easypr/train/create_data.h"
namespace easypr {
AnnChTrain::AnnChTrain(const char* chars_folder, const char* xml)
: chars_folder_(chars_folder), ann_xml_(xml)
{
ann_ = cv::ml::ANN_MLP::create();
type = 1;
kv_ = std::shared_ptr<Kv>(new Kv);
kv_->load("resources/text/province_mapping");
extractFeature = getGrayPlusProject;
}
void AnnChTrain::train()
{
int classNumber = 0;
int input_number = 0;
int hidden_number = 0;
int output_number = 0;
bool useLBP = false;
if (useLBP)
input_number = kCharLBPPatterns * kCharLBPGridX * kCharLBPGridY;
else
input_number = kGrayCharHeight * kGrayCharWidth;
input_number += 64;
classNumber = kChineseNumber;
hidden_number = kCharHiddenNeurans;
output_number = classNumber;
cv::Mat layers;
int first_hidden_neurons = 48;
int second_hidden_neurons = 32;
int N = input_number;
int m = output_number;
//int first_hidden_neurons = int(std::sqrt((m + 2) * N) + 2 * std::sqrt(N / (m + 2)));
//int second_hidden_neurons = int(m * std::sqrt(N / (m + 2)));
bool useTLFN = false;
if (!useTLFN) {
layers.create(1, 3, CV_32SC1);
layers.at<int>(0) = input_number;
layers.at<int>(1) = hidden_number;
layers.at<int>(2) = output_number;
}
else {
fprintf(stdout, ">> Use two-layers neural networks,\n");
fprintf(stdout, ">> First_hidden_neurons: %d \n", first_hidden_neurons);
fprintf(stdout, ">> Second_hidden_neurons: %d \n", second_hidden_neurons);
layers.create(1, 4, CV_32SC1);
layers.at<int>(0) = input_number;
layers.at<int>(1) = first_hidden_neurons;
layers.at<int>(2) = second_hidden_neurons;
layers.at<int>(3) = output_number;
}
ann_->setLayerSizes(layers);
ann_->setActivationFunction(cv::ml::ANN_MLP::SIGMOID_SYM, 1, 1);
ann_->setTrainMethod(cv::ml::ANN_MLP::TrainingMethods::BACKPROP);
ann_->setTermCriteria(cvTermCriteria(CV_TERMCRIT_ITER, 30000, 0.0001));
ann_->setBackpropWeightScale(0.1);
ann_->setBackpropMomentumScale(0.1);
auto files = Utils::getFiles(chars_folder_);
if (files.size() == 0) {
fprintf(stdout, "No file found in the train folder!\n");
fprintf(stdout, "You should create a folder named \"tmp\" in EasyPR main folder.\n");
fprintf(stdout, "Copy train data folder(like \"annCh\") under \"tmp\". \n");
return;
}
// using raw data or raw + synthic data.
trainVal(m_number_for_count);
}
std::pair<std::string, std::string> AnnChTrain::identifyGrayChinese(cv::Mat input) {
Mat feature;
extractFeature(input, feature);
float maxVal = -2;
int result = 0;
cv::Mat output(1, kChineseNumber, CV_32FC1);
ann_->predict(feature, output);
for (int j = 0; j < kChineseNumber; j++) {
float val = output.at<float>(j);
//std::cout << "j:" << j << "val:" << val << std::endl;
if (val > maxVal) {
maxVal = val;
result = j;
}
}
auto index = result + kCharsTotalNumber - kChineseNumber;
const char* key = kChars[index];
std::string s = key;
std::string province = kv_->get(s);
return std::make_pair(s, province);
}
void AnnChTrain::test() {
//TODO
}
void AnnChTrain::trainVal(size_t number_for_count) {
assert(chars_folder_);
cv::Mat train_samples;
std::vector<cv::Mat> train_images, val_images;
std::vector<int> train_label, val_labels;
float percentage = 0.7f;
int classNumber = kChineseNumber;
for (int i = 0; i < classNumber; ++i) {
auto char_key = kChars[i + kCharsTotalNumber - classNumber];
char sub_folder[512] = { 0 };
sprintf(sub_folder, "%s/%s", chars_folder_, char_key);
std::string test_char(char_key);
// if (test_char != "zh_yun") continue;
fprintf(stdout, ">> Testing characters %s in %s \n", char_key, sub_folder);
auto chars_files = utils::getFiles(sub_folder);
size_t char_size = chars_files.size();
fprintf(stdout, ">> Characters count: %d \n", (int)char_size);
std::vector<cv::Mat> matVec;
matVec.reserve(number_for_count);
for (auto file : chars_files) {
std::cout << file << std::endl;
auto img = cv::imread(file, IMREAD_GRAYSCALE); // a grayscale image
Mat img_resize;
img_resize.create(kGrayCharHeight, kGrayCharWidth, CV_8UC1);
resize(img, img_resize, img_resize.size(), 0, 0, INTER_LINEAR);
matVec.push_back(img_resize);
}
// genrate the synthetic images
for (int t = 0; t < (int)number_for_count - (int)char_size; t++) {
int rand_range = char_size + t;
int ran_num = rand() % rand_range;
auto img = matVec.at(ran_num);
SHOW_IMAGE(img, 0);
auto simg = generateSyntheticImage(img);
SHOW_IMAGE(simg, 0);
matVec.push_back(simg);
}
fprintf(stdout, ">> Characters count: %d \n", (int)matVec.size());
// random sort the mat;
srand(unsigned(time(NULL)));
random_shuffle(matVec.begin(), matVec.end());
int mat_size = (int)matVec.size();
int split_index = int((float)mat_size * percentage);
for (int j = mat_size - 1; j >= 0; j--) {
Mat img = matVec.at(j);
if (1) {
Mat feature;
extractFeature(img, feature);
if (j <= split_index) {
train_samples.push_back(feature);
train_images.push_back(img);
train_label.push_back(i);
}
else {
val_images.push_back(img);
val_labels.push_back(i);
}
}
}
}
// generate train data
train_samples.convertTo(train_samples, CV_32F);
cv::Mat train_classes = cv::Mat::zeros((int)train_label.size(), classNumber, CV_32F);
for (int i = 0; i < train_classes.rows; ++i)
train_classes.at<float>(i, train_label[i]) = 1.f;
auto train_data = cv::ml::TrainData::create(train_samples, cv::ml::SampleTypes::ROW_SAMPLE, train_classes);
// train the data, calculate the cost time
std::cout << "Training ANN chinese model, please wait..." << std::endl;
long start = utils::getTimestamp();
ann_->train(train_data);
long end = utils::getTimestamp();
ann_->save(ann_xml_);
std::cout << "Your ANN Model was saved to " << ann_xml_ << std::endl;
std::cout << "Training done. Time elapse: " << (end - start) / (1000 * 60) << "minute" << std::endl;
// test the accuracy_rate in train
if (1) {
int corrects_all = 0, sum_all = train_images.size();
std::cout << "train_images size: " << sum_all << std::endl;
for (size_t i = 0; i < train_images.size(); ++i) {
cv::Mat img = train_images.at(i);
int label = train_label.at(i);
auto char_key = kChars[label + kCharsTotalNumber - classNumber];
std::pair<std::string, std::string> ch = identifyGrayChinese(img);
if (ch.first == char_key)
corrects_all++;
}
float accuracy_rate = (float)corrects_all / (float)sum_all;
std::cout << "Train error_rate: " << (1.f - accuracy_rate) * 100.f << "% "<< std::endl;
}
// test the accuracy_rate in val
if (1) {
int corrects_all = 0, sum_all = val_images.size();
std::cout << "val_images: " << sum_all << std::endl;
for (size_t i = 0; i < val_images.size(); ++i) {
cv::Mat img = val_images.at(i);
int label = val_labels.at(i);
auto char_key = kChars[label + kCharsTotalNumber - classNumber];
std::pair<std::string, std::string> ch = identifyGrayChinese(img);
if (ch.first == char_key)
corrects_all++;
}
float accuracy_rate = (float)corrects_all / (float)sum_all;
std::cout << "Test error_rate: " << (1.f - accuracy_rate) * 100.f << "% "<< std::endl;
}
}
cv::Ptr<cv::ml::TrainData> AnnChTrain::tdata() {
assert(chars_folder_);
cv::Mat samples;
std::vector<int> labels;
std::cout << "Collecting chars in " << chars_folder_ << std::endl;
int classNumber = 0;
if (type == 0) classNumber = kCharsTotalNumber;
if (type == 1) classNumber = kChineseNumber;
for (int i = 0; i < classNumber; ++i) {
auto char_key = kChars[i + kCharsTotalNumber - classNumber];
char sub_folder[512] = {0};
sprintf(sub_folder, "%s/%s", chars_folder_, char_key);
std::cout << " >> Featuring characters " << char_key << " in "
<< sub_folder << std::endl;
auto chars_files = utils::getFiles(sub_folder);
for (auto file : chars_files) {
auto img = cv::imread(file, 0); // a grayscale image
auto fps = charFeatures2(img, kPredictSize);
samples.push_back(fps);
labels.push_back(i);
}
}
cv::Mat samples_;
samples.convertTo(samples_, CV_32F);
cv::Mat train_classes =
cv::Mat::zeros((int)labels.size(), classNumber, CV_32F);
for (int i = 0; i < train_classes.rows; ++i) {
train_classes.at<float>(i, labels[i]) = 1.f;
}
return cv::ml::TrainData::create(samples_, cv::ml::SampleTypes::ROW_SAMPLE,
train_classes);
}
}
Loading…
Cancel
Save