# 导入文件 import os import numpy as np import tensorflow as tf import batchdealing import forward # 变量声明 N_CLASSES = 9 # 9类 分别是:'one','two','three','four','five','six','seven','eight','nine' IMG_W = 64 # resize图像,太大的话训练时间久 IMG_H = 64 BATCH_SIZE = 20 # 一次喂入多少 CAPACITY = 200 # 容量 MAX_STEP = 200 # 一般大于10K learning_rate = 0.0001 # 一般小于0.0001 # 获取批次batch /Users/leixinhong/PycharmProjects/classification/teethimg/Re_train/ train_dir = '/Users/leixinhong/PycharmProjects/classification/teethimg/Re_train/' # 训练样本的读入路径 # logs_train_dir = '/Users/leixinhong/PycharmProjects/classification/teethimg/Re_train/' # logs存储路径 logs_test_dir = '/Users/leixinhong/PycharmProjects/classification/teethimg/test' # logs存储路径 # train, train_label = batchdealing.get_files(train_dir) train, train_label, val, val_label = batchdealing.get_files(train_dir, 0.3) # 训练数据及标签 train_batch, train_label_batch = batchdealing.get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY) # 测试数据及标签 val_batch, val_label_batch = batchdealing.get_batch(val, val_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY) # 训练操作定义 train_logits = forward.inference(train_batch, BATCH_SIZE, N_CLASSES) train_loss = forward.losses(train_logits, train_label_batch) train_op = forward.trainning(train_loss, learning_rate) train_acc = forward.evaluation(train_logits, train_label_batch) # 测试操作定义 test_logits = forward.inference(val_batch, BATCH_SIZE, N_CLASSES) test_loss = forward.losses(test_logits, val_label_batch) test_acc = forward.evaluation(test_logits, val_label_batch) # 这个是log汇总记录 summary_op = tf.compat.v1.summary.merge_all() # 产生一个会话 sess = tf.compat.v1.Session() # 产生一个writer来写log文件 train_writer = tf.compat.v1.summary.FileWriter(logs_test_dir, sess.graph) # val_writer = tf.summary.FileWriter(logs_test_dir, sess.graph) # 产生一个saver来存储训练好的模型 saver = tf.compat.v1.train.Saver() # 所有节点初始化 sess.run(tf.compat.v1.global_variables_initializer()) # 队列监控 coord = tf.train.Coordinator() threads = tf.compat.v1.train.start_queue_runners(sess=sess, coord=coord) # 进行batch的训练 try: # 执行MAX_STEP步的训练,一步一个batch for step in np.arange(MAX_STEP): if coord.should_stop(): break # 启动以下操作节点 _, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc]) # 每隔50步打印一次当前的loss以及acc,同时记录log,写入writer if step % 10 == 0: print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0)) summary_str = sess.run(summary_op) train_writer.add_summary(summary_str, step) # 每隔100步,保存一次训练好的模型 if (step + 1) == MAX_STEP: checkpoint_path = os.path.join(logs_test_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step) except tf.errors.OutOfRangeError: print('Done training -- epoch limit reached') finally: coord.request_stop()