#图片预处理 # 将原始图片转换成需要的大小,并将其保存 import os import tensorflow as tf from PIL import Image # 原始图片的存储位置 /Users/leixinhong/PycharmProjects/classification/teethimg/train-data/ orig_picture = '/Users/leixinhong/PycharmProjects/classification/teethimg/train-data' # 生成图片的存储位置 /Users/leixinhong/PycharmProjects/classification/teethimg/Re_train/ gen_picture = '/Users/leixinhong/PycharmProjects/classification/teethimg/Re_train/' # 需要的识别类型 classes = ['one', 'two', 'three', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine'] # 样本总数 num_samples = 90 # 制作TFRecords数据 def create_record(): writer = tf.compat.v1.python_io.TFRecordWriter("dishes_train.tfrecords") for index, name in list(enumerate(classes)): # /Users/leixinhong/PycharmProjects/classification/teethimg/train-data/one/ class_path = orig_picture + "/" + name + "/" # print(index) # print(name) # print(class_path) # print(os.listdir(class_path)) # os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表。 for img_name in os.listdir(class_path): img_path = class_path + img_name #print(img_path) img = Image.open(img_path) #print(img) img = img.resize((64, 64)) # 设置需要转换的图片大小 #print(img) img_raw = img.tobytes() # 将图片转化为原生bytes print(index, img_raw) example = tf.train.Example( features=tf.train.Features(feature={ "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])), 'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])) })) writer.write(example.SerializeToString()) writer.close() def read_and_decode(filename): # 创建文件队列,不限读取的数量 filename_queue = tf.compat.v1.train.string_input_producer([filename]) # create a reader from file queue reader = tf.compat.v1.TFRecordReader() # reader从文件队列中读入一个序列化的样本 _, serialized_example = reader.read(filename_queue) # get feature from serialized example # 解析符号化的样本 features = tf.io.parse_single_example( serialized_example, features={ 'label': tf.io.FixedLenFeature([], tf.int64), 'img_raw': tf.io.FixedLenFeature([], tf.string) }) label = features['label'] img = features['img_raw'] img = tf.io.decode_raw(img, tf.uint8) img = tf.reshape(img, [64, 64, 3]) # img = tf.cast(img, tf.float32) * (1. / 255) - 0.5 label = tf.cast(label, tf.int32) return img, label if __name__ == '__main__': # 程序主入口 create_record() batch = read_and_decode('dishes_train.tfrecords') init_op = tf.group(tf.compat.v1.global_variables_initializer(), tf.compat.v1.local_variables_initializer()) with tf.compat.v1.Session() as sess: # 开始一个会话 sess.run(init_op) coord = tf.train.Coordinator() threads = tf.compat.v1.train.start_queue_runners(coord=coord) for i in range(num_samples): example, lab = sess.run(batch) # 在会话中取出image和label img = Image.fromarray(example, 'RGB') # 这里Image是之前提到的 img.save(gen_picture + '/' + str(i) + 'samples' + str(lab) + '.jpg') # 存下图片;注意cwd后边加上‘/’ print(example, lab) coord.request_stop() coord.join(threads) sess.close()