You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

51 lines
2.2 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import cv2
import numpy as np
import dlib
from matplotlib import pyplot as plt
def idCardPicGenerate(img, type):
detector = dlib.get_frontal_face_detector() # 返回人脸的矩形框
# 返回人脸重要的68个点的位置
landmark_predictor = dlib.shape_predictor('E:/Digital_Image_Process-master/function/IdCardPicGenerate/shape_predictor_68_face_landmarks.dat')
print("11111")
if img.shape[2] == 4:
img = cv2.cvtColor(img,cv2.COLOR_RGBA2BGR)
imgg = img.copy()
t = img.shape
faces = detector(img, 1)
print(faces)
mask = np.zeros(img.shape[:2], np.uint8)
bgdModel = np.zeros((1, 65), np.float64)
fgdModel = np.zeros((1, 65), np.float64)
if (len(faces) > 0):
for k, d in enumerate(faces):
left = max(int((3 * d.left() - d.right()) / 2), 1)
top = max(int((3 * d.top() - d.bottom()) / 2) - 50, 1)
right = min(int((3 * d.right() - d.left()) / 2), t[1])
bottom = min(int((3 * d.bottom() - d.top()) / 2), t[0])
rect = (left, top, right, bottom)
rect_reg = (d.left(), d.top(), d.right(), d.bottom())
# shape = landmark_predictor(img, d)
shape = landmark_predictor(img, d)
print(shape)
else:
exit(0)
# mask会保存明显的背景像素为0明显的前景像素为1可能的背景像素为2可能的前景像素为3
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 100,
cv2.GC_INIT_WITH_RECT) # 函数返回值为mask,bgdModel,fgdModel
# 利用mask做模板
mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8') # 0和2做背景
# 背景颜色
bg_color = [(225, 166, 23), (0, 0, 255), (255, 255, 255)]
img = img * mask2[:, :, np.newaxis] # 使用蒙板来获取前景区域
erode = cv2.erode(img, None, iterations=1) # 腐蚀操作
dilate = cv2.dilate(erode, None, iterations=1) # 膨胀操作
for i in range(t[0]): # 高、
for j in range(t[1]):
if max(dilate[i, j]) <= 0:
dilate[i, j] = bg_color[type]
img = img[rect[1]:rect[3], rect[0]:rect[2]]
dilate = dilate[rect[1]:rect[3], rect[0]:rect[2]]
output_im = cv2.resize(dilate, (361, 381))
return output_im