You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
107 lines
3.0 KiB
107 lines
3.0 KiB
6 months ago
|
from __future__ import annotations
|
||
|
|
||
|
from ._array_object import Array
|
||
|
|
||
|
from typing import NamedTuple
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
# Note: np.unique() is split into four functions in the array API:
|
||
|
# unique_all, unique_counts, unique_inverse, and unique_values (this is done
|
||
|
# to remove polymorphic return types).
|
||
|
|
||
|
# Note: The various unique() functions are supposed to return multiple NaNs.
|
||
|
# This does not match the NumPy behavior, however, this is currently left as a
|
||
|
# TODO in this implementation as this behavior may be reverted in np.unique().
|
||
|
# See https://github.com/numpy/numpy/issues/20326.
|
||
|
|
||
|
# Note: The functions here return a namedtuple (np.unique() returns a normal
|
||
|
# tuple).
|
||
|
|
||
|
class UniqueAllResult(NamedTuple):
|
||
|
values: Array
|
||
|
indices: Array
|
||
|
inverse_indices: Array
|
||
|
counts: Array
|
||
|
|
||
|
|
||
|
class UniqueCountsResult(NamedTuple):
|
||
|
values: Array
|
||
|
counts: Array
|
||
|
|
||
|
|
||
|
class UniqueInverseResult(NamedTuple):
|
||
|
values: Array
|
||
|
inverse_indices: Array
|
||
|
|
||
|
|
||
|
def unique_all(x: Array, /) -> UniqueAllResult:
|
||
|
"""
|
||
|
Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.
|
||
|
|
||
|
See its docstring for more information.
|
||
|
"""
|
||
|
values, indices, inverse_indices, counts = np.unique(
|
||
|
x._array,
|
||
|
return_counts=True,
|
||
|
return_index=True,
|
||
|
return_inverse=True,
|
||
|
equal_nan=False,
|
||
|
)
|
||
|
# np.unique() flattens inverse indices, but they need to share x's shape
|
||
|
# See https://github.com/numpy/numpy/issues/20638
|
||
|
inverse_indices = inverse_indices.reshape(x.shape)
|
||
|
return UniqueAllResult(
|
||
|
Array._new(values),
|
||
|
Array._new(indices),
|
||
|
Array._new(inverse_indices),
|
||
|
Array._new(counts),
|
||
|
)
|
||
|
|
||
|
|
||
|
def unique_counts(x: Array, /) -> UniqueCountsResult:
|
||
|
res = np.unique(
|
||
|
x._array,
|
||
|
return_counts=True,
|
||
|
return_index=False,
|
||
|
return_inverse=False,
|
||
|
equal_nan=False,
|
||
|
)
|
||
|
|
||
|
return UniqueCountsResult(*[Array._new(i) for i in res])
|
||
|
|
||
|
|
||
|
def unique_inverse(x: Array, /) -> UniqueInverseResult:
|
||
|
"""
|
||
|
Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.
|
||
|
|
||
|
See its docstring for more information.
|
||
|
"""
|
||
|
values, inverse_indices = np.unique(
|
||
|
x._array,
|
||
|
return_counts=False,
|
||
|
return_index=False,
|
||
|
return_inverse=True,
|
||
|
equal_nan=False,
|
||
|
)
|
||
|
# np.unique() flattens inverse indices, but they need to share x's shape
|
||
|
# See https://github.com/numpy/numpy/issues/20638
|
||
|
inverse_indices = inverse_indices.reshape(x.shape)
|
||
|
return UniqueInverseResult(Array._new(values), Array._new(inverse_indices))
|
||
|
|
||
|
|
||
|
def unique_values(x: Array, /) -> Array:
|
||
|
"""
|
||
|
Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.
|
||
|
|
||
|
See its docstring for more information.
|
||
|
"""
|
||
|
res = np.unique(
|
||
|
x._array,
|
||
|
return_counts=False,
|
||
|
return_index=False,
|
||
|
return_inverse=False,
|
||
|
equal_nan=False,
|
||
|
)
|
||
|
return Array._new(res)
|